

Tiny.txt

First Edition

Written by Alexander Dawson

Assets That Will Improve Your Website

Tiny.txt: Assets That Will Improve Your Website, First Edition

© Copyright 2023, Alexander Dawson, All rights reserved.

Find me on the web at: https://alexanderdawson.com/

To report errors, send me a message at: alex@hitechy.com

Editor: Alexander Dawson

Writer: Alexander Dawson

Publisher: Alexander Dawson

Disclaimer: No part of the contents of this book may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means beyond its license, electronic, mechanical, photocopying,
recording, scanning, or otherwise beyond international and local
copyright law without the written permission and consent of the
publisher and the author of this book. The information in this book is
provided and distributed on an "As Is" basis, without warranty. While
every precaution has been taken in the production of this book, the
author shall not have any liability to any person or entity with respect
to any loss or damage caused or alleged to be caused directly or
indirectly by the instructions contained in this book or by the
computer software and hardware products described in it.

First published and showcased through the website AssetConfig.com,
of which I am the sole creator. The idea for this book is based on a
series of articles written (by myself) and published many years ago on
a now defunct web development blog. Code examples use the
libraries provided on the AssetConfig platform and are offered to you
under the same (MIT) open source license as the website.

Set in 45/20/18/14/10 Geomanist.

Chapter Images use Icon54 Classic.

Printed and published in the United Kingdom.

Page of 2 9

Tiny.txt
Assets That Will Improve Your Website

By
Alexander Dawson

Page of 3 9

Table of Contents

Preface: About the author and acknowledgements 1

Introduction: Quick files that will improve your website 2

Chapter 1: Pathways within the document head 4

<head>

<meta>

<link>

Chapter 2: Optimizing the server for performance 25

.htaccess

Chapter 3: Ensuring your sales routes are secure 53

ads.txt

Chapter 4: Getting your web project eco-friendly 58

carbon.txt

Chapter 5: Show your development progress with ease 62

change.log

Chapter 6: Keeping Microsoft Silverlight functional 68

clientaccesspolicy.xml

Chapter 7: Allow Adobe Flash to run despite retirement 71

crossdomain.xml

Page of 4 9

Chapter 8: Optimizing semantic metadata for RDF 76

dublin.rdf

Chapter 9: Tackle common server errors together 82

error.html

Chapter 10: Never miss a future calendar event 91

event.ics

Chapter 11: Make your project stand out with an icon 98

favicon.ico

apple-touch-icon.png

x512.png

x192.png

small.png

medium.png

wide.png

large.png

icon.svg

apple-splash.png

banner.png

Chapter 12: Offer syndicated content for non-browsers 110

rss.xml

itunes.xml

atom.xml

feed.json

Page of 5 9

Chapter 13: If you're friendly, network with other sites 131

foaf.rdf

Chapter 14: Show your physical location for retail stores 137

geo.rdf

geo.kml

Chapter 15: Credit those who made the project possible 144

humans.txt

Chapter 16: Get a solid backbone for your web design 149

index.html

Chapter 17: Have all your documents in order for visitors 155

license.txt

terms.txt

impressum.txt

accessibility.txt

privacy.txt

Chapter 18: Gathering similar curated content to share 171

feed.opml

Chapter 19: Getting your layout optimized for preferences 176

modes.css

Chapter 20: Making a web browser search compatible 189

opensearch.xml

Chapter 21: Declaring privacy rules for old IE versions 194

p3p.xml

Page of 6 9

Chapter 22: Ensuring your site's declared child-friendly 198

powder.xml

pics.rdf

Chapter 23: Reduce the impact of pages on printers 208

print.css

Chapter 24: Keep your development team up-to-date 222

README

Chapter 25: Setting the default rules for search engines 226

robots.txt

Chapter 26: Declare security protocols and contacts 231

security.txt

dnt-policy.txt

Chapter 27: Making your PWA image conscious 239

site.webmanifest

browserconfig.xml

Chapter 28: Mapping the index of your entire website 246

sitemap.xml

Chapter 29: Get a solid backbone for your web layout 250

style.css

Chapter 30: Providing accessibility for web videos 255

subtitles.vtt

Page of 7 9

Chapter 31: Getting your PWA offline and app ready 261

sw.js

Chapter 32: Never miss a potential contacts details 266

vcard.vcf

Page of 8 9

"For the long-suffering professionals who work tirelessly to make the
web a better place, and those individuals who continue to strive for

a more inclusive, sustainable, standards compliant Internet."

Page of 9 9

Preface
Hello there, I’m Alexander Dawson.

I’ve been building websites and applications for a long time, over 20
years (if you want to put a number on it). I’m based in the UK
(Brighton) and I currently work as a freelancer designing websites,
developing products (and open source tools), and authoring content
for well-known publications. I also specialize in Web standards,
Inclusive design, Web sustainability, and front-end performance.

Acknowledgements
Before we get started, I just wanted to give thanks to everyone who
has chosen to grab a copy of this book. I realize there are plenty of
web development titles out there, so I hope that you find this one
useful on your journey and worthy of your time. If you have feedback
or want to get in touch, just visit my website (it’s listed on the inside
cover and the back of the book) and drop me a friendly email. I do try
to reply to everyone who contacts me (time permitting).

Page of 1 275

Introduction:
Quick files that will improve your website
Writing a book, just like building a website or app, is a commitment.
You’re dedicating several months to ploughing your experience and
brainpower into something that (hopefully) other people can follow
and will in-turn find useful. This particular book has been written with
one goal in mind, tackling those often neglected and misunderstood
small web assets that can be bolted onto your website or app to
provide added functionality, with very little development overhead.

Some of these tiny files improve the user-experience, some improve
search engine optimization, and others enable your website to run as
a single page application. It’s all pretty exciting stuff, yet not enough
focus is given to these files, which is why I'm taking the time to cover
them in detail, all in one place, where you can reference them at any
time and build them in any order to boost your site's usefulness.

Your Expectations
Within this book, we shall tackle each file within its own chapter to
ensure that you don’t get overwhelmed. You shouldn’t feel the need
to include every file within every web project you launch, as some
will ultimately be unsuitable (depending on your sites requirements).
Though, it’s worth knowing about each of them on the off chance
you may need one of them either in the future or within another job.

You can always return to that chapter and create the file when you
require it. In fact, this book is designed, so you can jump to the
chapter (document) you want to build and not need to have read
anything before getting started (with a few exceptions). Though, as
with many things Web development, it's easier on a workflow to
decide to integrate and use a technology before you begin a project.

Page of 2 275

If you wish to know what you should expect from this book:

• A comprehensive guide to assets used in web development.

• Lots of hand coding examples based on living specifications.

• Easy-to-follow steps shown in a logical format for each file type.

If you want to know what you shouldn’t expect from this book:

• This isn’t a guide to HTML, CSS, JS, or to building a full website.

• This book expects you to know basic front-end development.

• You can use any toolchain you like, but don’t expect automation.

Page of 3 275

Chapter 1:
Pathways within the document head
Build an inventory of what you need in the head of your HTML
document using links, metadata and more.

Page of 4 275

<head>
Whilst this isn’t a file format in itself (in fact, it exists within every HTML
file you produce), I feel it’s important enough to dedicate a chapter to
this particular segment before we jump into the rest of the book.

The head element of every web page or app will contain a multitude
of elements, many of which will contain references to the very files
we’ll be talking about throughout this title. Often these references are
necessary for the browser to sniff them out and utilize them, so it’s
critical you get to know them and include them in your documents.

These references usually come in the form of either meta tags or link
elements; and while neither holds more importance than the other,
there’s a long history of overuse and abuse of meta tags, with both
search engines and browsers ignoring proprietary tags. It’s a pretty
diverse environment that’s determined more on convention and on
popularity (and adoption) than best practice (like other elements of
the semantic web). This is because search engines, social networks,
apps and we as developers determine their support through usage.

Reference
For a guide to the elements which can be included in
the head, check the HTML5 specification at https://
www.w3.org/TR/html52/document-metadata.html

Page of 5 275

https://www.w3.org/TR/html52/document-metadata.html

Generic Elements
Before we start looking at meta and link tags, let's first examine the
other elements you’ll find within the head that should be mentioned.

As you can see, the only one of the above you’re required to include
in all of your documents is a title tag. There’s no set rule as to what
you should include within it but ensure you make it relevant to your
website's brand and be consistent throughout all of your pages.

Element Required Description

<base> No
This element dictates the base directory of
anchor references (for relative linking to
locations). There can be only one per file!

<noscript> No
This element provides you an opportunity
to offer an accessible fallback for if
JavaScript fails.

<script> No
This element allows you to either link to or
embed JavaScript within the page or app.

<style> No
This element embeds a block of CSS style
accessible only to that page or app.

<title> Yes
This element describes your app or
webpage within the browser’s title bar.

Page of 6 275

Regarding the script and style tags, they can occasionally be useful to
inject code that needs to be run immediately before render-blocking
occurs. While you can use async with JavaScript, CSS currently has no
such feature (without some JS assistance) so directly embedding can
help with above the fold preloading. If you do use JavaScript, be sure
to use the noscript element to offer a fallback because even today,
cases of no-JS availability can occur (and break your site).

<meta>
Of all the tags you can include within the head of your documents,
the most notorious are the meta tags. Over the years they have been
a bit of a wild west of proprietary formats, non-adoption, and abuse
with literally thousands appearing (or being misinterpreted) and vying
for widespread attention. The truth is nobody really knows how much
search engines or social networks factor them in, and with a couple
of exceptions, their value has been very much diminished.

Before we begin, let’s address the most important meta tag, and the
only one which is required to be included within every document; the
charset meta element. Unless you require some unique encoding
format, best to stick with unicode (utf-8) and just include the below
as-is within your files, ensuring it's the first thing below the head.

Reference

Google provides a handy reference guide to which
meta tags their search engine actively recognizes
https://developers.google.com/search/docs/
advanced/crawling/special-tags

Element Description

<meta charset="utf-8">
Defines the encoding for your app or
website (utf-8 is the default).

Page of 7 275

https://developers.google.com/search/docs/advanced/crawling/special-tags

http-equiv Elements
There are two types of optional meta tags we should examine. Firstly,
we shall examine http-equiv tags which can impact the browser.

Element Description

<meta http-equiv="Content-
Security-Policy">

Control where resources (after
the tag) are loaded from.

<meta http-equiv="content-type">
Serves the same purpose as the
charset tag (defining encoding).

<meta http-equiv="default-style">
Set the default stylesheet to be
used by this website or app.

<meta http-
equiv="imagetoolbar">

This deprecated tag only affects
IE6 users as they hover images.

Page of 8 275

Name Elements
Next we shall examine the name meta tags which can impact your
sites SEO if they are utilized by search engines or social networks:

<meta http-
equiv="msthemecompatible">

This deprecated tag only affects
Windows XP (IE6+) users GUI’s.

<meta http-equiv="refresh">
Avoid this tag which redirects to a
new page. See chapter 2.

<meta http-equiv="window-
target">

Require the document or app to
appear in a specific frame.

<meta http-equiv="x-dns-
prefetch-control" content="off">

Totally opt out of browser based
DNS prefetching.

<meta http-equiv="x-ua-
compatible" content="IE=edge">

Force Internet Explorer 8+ to use
its latest rendering engine.

Element Description

Reference
This wiki provided by the WHAT-WG provides a
comprehensive guide to all the known name meta tags
https://wiki.whatwg.org/wiki/MetaExtensions

Element Description

<meta name="abstract">
A summary of the content -
useful for long documents.

<meta name="apple-mobile-
web-app-capable"
content="yes">

Triggers a web app running on
iOS to run in full screen.

Page of 9 275

https://wiki.whatwg.org/wiki/MetaExtensions

<meta name="apple-mobile-
web-app-title">

Set a friendly title for apps when
added to the iOS home-screen.

<meta name="apple-mobile-
web-app-status-bar-style"
content="default">

If in fullscreen, possible values
you can use are light-content,
dark-content, hidden or default.

<meta name="application-
name">

Short name of your web app for
when added to home screens.

<meta name="author">
The individual or organization
who published the website.

<meta name="color-scheme">
Indicate if your site supports light,
dark mode or just one palette.

<meta name="contact">
A phone number, email, or
physical location for the website.

<meta name="copyright" >
Provide copyright details or a link
to a specific license agreement.

<meta name="creator">
Can be used in place of author, it
identifies who produced the site.

<meta name="description">
A description of your page, which
is limited to up to 156 chars.

<meta name="designer">
Give credit where due via a link
to the designer (See chapter 15).

<meta name="format-detection"
content="telephone=no">

Disable auto-formatting of phone
numbers on handheld devices.

<meta name="generator">
Promote the software used to
create the website or application.

Element Description

Page of 10 275

<meta name="geo.placename">
The city or town where the app
or site is based (see chapter 14).

<meta name="geo.position">
Provide a longitude and latitude
(semicolon separated) position.

<meta name="geo.region">
Two digit region code to indicate
your current location (such as US).

<meta name="google"
content="nositelinkssearchbox">

Tells Google not to show the
SiteLinks search box for your site.

<meta name="google"
content="notranslate">

Tells Google not to translate your
document via Google Translate.

<meta name="google"
content="nopagereadaloud">

Prevent voice assistants from
reading the body of this page.

<meta name="googlebot">
Tell Google if this file should be
indexed (see chapter 24).

<meta name="ICBM">
Use comma separated latitude
and longitude to show a location.

<meta name="keywords">
Comma separated words relating
to the site (won’t affect SEO).

<meta name="mobile-web-app-
capable" content="yes">

Adds a web app on Android to
the home screen.

<meta name="msapplication-
config">

Offers a link to Internet Explorer
Tile images (See Chapter 27).

<meta name="monetization">
Allow your site to be monetized
using payment stream providers.

<meta name="pinterest"
content="nopin">

Stop Pinterest users from saving
bits from your site to their boards,

Element Description

Page of 11 275

<meta name="publisher">
Credit the company that allowed
your content to be shown.

<meta name="rating">
Keep your site child-friendly with
content labelling (see Chapter 21).

<meta name="referrer">
Control how referrer information
is passed with HTTP requests.

<meta name="robots">
Tell search engines if a file should
be indexed (see chapter 24).

<meta name="skype_toolbar"
content="skype_toolbar_parser
_compatible">

Disable Skype from automatically
formatting and detecting phone
numbers on the desktop.

<meta name="subject">
Gives a brief overview of what
subject your site or app relates to.

<meta name="theme-color">
The color you’d prefer a browser
UI to be styled to match an app.

<meta name="viewport"
content="width=device-width,
initial-scale=1">

Used by mobile devices to
indicate how they scale and size.
This tag must be declared first.

Element Description

Page of 12 275

OpenGraph Elements
These days, being connected to social media is an essential part of
any business. Ensuring a website is compatible with the major social
giants is a must-have. The below meta tags ensure that any sharing of
your pages will look and behave better on networks they’re shared.

Element Description

<meta
property="og:description">

Describes your content briefly, as
it’ll appear as a snippet.

<meta property="og:image">
An image to show your post on
social media (min 1080px wide).

<meta
property="og:image:alt">

Alternative text for if your image
fails to load for accessibility.

<meta property="og:locale">
Defaults to en_US but if you need
a different locale, use one.

<meta property="og:title">
The title of your content without
any branding (site name).

<meta property="og:type">
The default is website, but you can
specify music or video.

<meta property="og:url">
This should be the base URL of
your main website or application.

<meta property="og:video">
If you want streaming video to
play, use this element as well.

<meta name="twitter:card"
content="summary">

The content for this is always
summary, as it’s a base tag.

<meta name="twitter:site">
The @username of the business or
app which the page relates.

Page of 13 275

<meta name="twitter:creator">
The @username of the person
who owns or runs this site.

<meta
name="twitter:description">

In 200 characters or less, detail the
content of the document.

<meta name="twitter:title">
In 70 characters or less, provide a
title for the article on this page.

<meta name="twitter:image">
An image for this article less than
5mb (JPG, PNG, WEBP or GIF).

<meta
name="twitter:image:alt">

Make your image accessible with
alternative text.

<meta name="twitter:dnt"
content="on">

If you embed tweets, use this to
keep your site's data private.

Element Description

Reference

Read the specs at https://developers.facebook.com/
docs/sharing/webmasters (Facebook), https://
developer.twitter.com/en/docs/twitter-for-websites/
cards/overview/markup (Twitter) and https://ogp.me/

Page of 14 275

https://developers.facebook.com/docs/sharing/webmasters
https://developer.twitter.com/en/docs/twitter-for-websites/cards/overview/markup
https://ogp.me/

Dublin Core Elements
Below are some more name meta tags which utilize the DCMI (Dublin
Core Metadata Initiative) standard, which is pretty widely adopted:

Element Description

<meta
name="dc.contributor">

If you have multiple contributors to a
resource, you can include them here.

<meta
name="dc.coverage">

Include place names or coordinates to
show the scope of the document.

<meta name="dc.creator">
The person or business responsible for
the app or site will be added here.

<meta name="dc.date">
Using YYYY-MM-DD you can provide a
timestamp for content creation.

Page of 15 275

<meta
name="dc.description">

Offer a brief explanation or a table of
contents of what the content is about.

<meta name="dc.format">
If the content isn’t in HTML (default), use
this to offer a format MIME type.

<meta
name="dc.identifier">

Provide a link to a URL, DOI, ISSN or ISBN
which references the content.

<meta
name="dc.language">

Provide details of the locale in which the
content is offered to visitors.

<meta
name="dc.publisher">

Provide details of the organization or
individuals responsible for content.

<meta name="dc.relation">
If there are any links which connect to
the content, provide the reference.

<meta name="dc.rights">
License information, copyright details or
links to agreements are used here.

<meta name="dc.source">
If the content cites any sources, you can
credit the references with this tag.

<meta name="dc.subject">
Offer details of the content’s subject
using semicolon separated strings.

<meta name="dc.title">
Give the article title without branding so
it can be read by aggregators.

<meta name="dc.type">
Shows content categories, functions,
genres, or aggregation levels.

Element Description

Page of 16 275

In chapter 8, I’ll describe how to utilize the Dublin Core to provide an
easy-to-index file for a project that offers a rich amount of metadata
about your website or app that search engines can use if they aren’t
already taking advantage of newer schemas like microdata. Aside
from that, using DC terms within individual pages has a similar effect.

Summary
Granted, all of this is a lot to take in. You’re not likely to want to include
them all into your pages because otherwise they'll become bloated
and probably quite repetitive (as some tags just say the same thing).
So which do I recommend? I’ve included a template below that suits
most static web pages and apps, feel free to adapt it as needed.

<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-
scale=1">
<meta name="description" content="Description.">
<meta name="referrer" content="no-referrer">
<meta name="apple-mobile-web-app-title" content="Title">
<meta name="theme-color" content="#ffffff">
<meta name="msapplication-config"
content="browserconfig.xml">
<meta property="og:title" content="Title">
<meta property="og:description" content="Description.">
<meta property="og:type" content="website">
<meta property="og:locale" content="en_us">
<meta property="og:url" content="https://example.com/">
<meta property="og:image" content="images/image.png">
<meta property="og:image:alt" content="Logo">

Page of 17 275

<link>
While meta tags are an important part of the head of any document,
the element which holds the most interest for us regarding this book
as it connects documents to their web assets is the link element. You’ll
be using this particular joining force to activate various web files
within your sites and apps so that devices, browsers, social networks
and search engines can use them. This is where things get innovative,
as it's the backbone for how many of the books assets function.

Reference

For more information about DCMI, check the spec at
https://www.dublincore.org/specifications/dublin-
core/dcmi-terms/ or read this handy usage guide at
https://www.dublincore.org/specifications/dublin-
core/usageguide/2000-07-16/simple-html/

Page of 18 275

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/usageguide/2000-07-16/simple-html/

Let's get the most common one out-of-the-way first, you’ll be using
this one every time you build a website or app. It’s the stylesheet link,
which gives your pages style to go along with their substance. Often
you’ll have a primary stylesheet which contains your primary visual
details, but you can also offer alternative ones that can be chosen by
the end-user, such as for themes (IE and Firefox users have this feature
built-in but Chrome users require an extension to take advantage).

With the evolution of browsers you can provide stylesheets with
numerous conditions, such as the ability to wrap them in conditional
comments (to target Internet Explorer), target them using media
queries for specific resolutions, or target device or user preferences
(such as dark mode). You can even provide a special stylesheet for
printers or voice assisted users. We will cover this later in the book.

Element Description

<link rel="stylesheet"
href="styles.css">

Apply an external, primary CSS
stylesheet to the document.

<link rel="alternate stylesheet"
href="theme.css"
title="Theme">

Offer a secondary stylesheet which
the user can trigger upon request.
Useful for offering website themes.

Reference
If you want to target a specific version of IE using
conditional comments, read this Wikipedia article:
https://en.wikipedia.org/wiki/Conditional_comment

Page of 19 275

https://en.wikipedia.org/wiki/Conditional_comment

URL Links
Next, let’s look at all the other link types that can be used to provide
useful information via URL's for browsers or search engines.

Element Description

<link rel="amphtml"> Link to a Google AMP version of the page.

<link rel="archives"> A collection of records or historical docs.

<link rel="canonical"> Avoid duplication issues with your content.

<link rel="contents"> Opera navigation link to table of contents.

<link rel="dns-
prefetch"> Resolve the DNS quickly for performance.

<link rel="edit"> Indicate a location to edit the document.

<link rel="EditURI"> Used by 3rd party tools to maintain a blog.

<link rel="first"> The first document in a series of articles.

<link rel="glossary"> Opera navigation link to a list of definitions.

<link rel="home"> Opera navigation link to the home page.

<link rel="index"> The top-level file in the website's structure.

<link rel="last"> The last document in a series of articles.

<link rel="me"> Information about the document author.

<link rel="micropub"> Post to your domain via a micropub client.

<link rel="modulepre-
load">

Triggers high-priority and early loading of
module-based scripts (JavaScript).

<link rel="next"> The next document in a series of articles.

Page of 20 275

<link
rel="openid.delegate"> The site to identify an OpenID account.

<link
rel="openid.server"> The server to validate a user's details.

<link rel="pingback"> Lets blogs identify when pages linked to.

<link rel="preconnect"> Connect to a URL in readiness for requests.

<link rel="prefetch"> Cache a file before it’s requested by a user.

<link rel="preload"> Force the browser to download an asset.

<link rel="prerender"> Load an entire page in the background.

<link rel="prev"> The previous file in a series of articles.

<link rel="self"> When files have multiple references.

<link rel="shortlink"> Provide a shortened URL for this resource.

<link
rel="subresource"> Prefetch a file but with the highest priority.

<link rel="up"> Link to a page higher in the URL structure.

<link
rel="webmention"> Notifies a URL when you’ve linked to it.

Element Description

Page of 21 275

Asset Links
Finally, we get to the best stuff, the assets which you can link to that
will give your site a tiny but useful benefit. It's the core of the book:

Element Description

<link rel="alternate"> Offer RSS & Atom feeds (See chapter 25).

<link rel="apple-
touch-icon"> A 180px Image for iOS users (See chapter 11).

<link rel="apple-
touch-startup-
image">

A splash screen for iOS apps (See chapter 11).

<link rel="author"> Give authors credit (See chapters 8 & 13-15).

<link rel="help"> Offer support or guidance (See chapter 21).

<link rel="icon"> An SVG favicon for browsers (see chapter 11).

<link rel="license"> Link to the website's license (see chapter 17).

<link rel="manifest"> Give your PWA an app icon (See chapter 27).

Page of 22 275

<link rel="mask-
icon">

Only use this deprecated SVG in old Safari.

<link rel="P3Pv1"> Set privacy rules for old IE (See chapter 20).

<link rel="search"> Search within the browser (See chapter 19).

<link rel="shortcut
icon">

A deprecated favicon standard which has
been replaced. (see chapter 11).

Element Description

Page of 23 275

Summary
This concludes the list of stuff you can include within the head of your
document. With great power comes great responsibility, and as with
the META tags it’s probably a lot to take in. As to what you should
include, I recommend only including the bare minimum you need to
reduce HTTP requests and keep your project performant. To give you
a sample of what might work for a website, I’ve provided some link
tags below that I commonly use within most of my work.

<link rel="preload" as="font" type="font/woff2" crossorigin
href="cache/font.woff2">
<link rel="stylesheet" href="cache/style.css">
<link rel="author" type="text/plain" href="humans.txt">
<link rel="apple-touch-icon" sizes="180x180" href="apple-touch-
icon.png">
<link rel="icon" href="images/icon.svg" type="image/svg+xml">
<link rel="manifest" href="site.webmanifest">

As with the meta example, you could place them together within the
head of an HTML document and use that as a boilerplate to get
yourself started (replacing the template text with your own). You can
also use any of the meta or link tags provided in this chapter to help
optimize your site and make it as productive as possible for visitors.

Reference
Web Developer Josh Buchea has created a GitHub
page that gives a quick reference to several of these
properties: https://github.com/joshbuchea/HEAD

Page of 24 275

https://github.com/joshbuchea/HEAD

Chapter 2:
Optimizing the server for performance
Build Apache server configuration files with all the trimmings you
require for a fast, efficient server.

Page of 25 275

.htaccess
Welcome to the wonderful world of server configuration. I know this
is a daunting world to find yourself in, but if you want your projects to
be as performant as possible, it’s a critical part of the equation. If you
happen to use one of the static hosting services to deploy your site
(JAMStack) such as Netlify, this chapter will be entirely optional, so feel
free to skip ahead to another chapter; otherwise, it’s time to examine
the powerful httpd.conf and htaccess server configuration files.

As I primarily deal with LAMP servers (Linux, Apache, MySQL & PHP),
I’ll focus all of my attention on the configuration of Apache within this
chapter, however if you prefer another server such as NginX, IIS, or
macOS Server there are better, dedicated guides out there. In fact, the
HTML boilerplate team has a great NginX toolkit that’ll help you
achieve fairly similar results. With all of this in mind, let’s get started.

Page of 26 275

For the basis of this book, I’m basing all of these performance tweaks
upon the wonderful cultivated snippets offered in the open source
HTML5 Boilerplate. As experience has shown, these to be among the
most extensive and tested in the industry, offering a solid foundation
of tweaks. I’ve made some expansions upon the base set provided to
improve upon the compatibility where possible, and I’ll examine each
section in turn to help you identify if you should use it on your site.

As noted on the boilerplate's website, If you have access to a server's
main configuration file (usually httpd.conf), it’s always preferential to
make tweaks there (as unlike .htaccess, it won’t slow Apache down as
much). If you don’t, you can always create a .htaccess file in your base
directory and include all the server tweaks you require within the file.
The critical thing with httpd.conf or .htaccess is that you keep it as
lean as possible, as the more actions a server has to perform against
each HTTP request, the slower it will run (coding is a balancing act).

Reference

The HTML5 Boilerplate Apache files can be found here
https://github.com/h5bp/server-configs-apache and
the NginX boilerplate files can be found here https://
github.com/h5bp/server-configs-nginx

Reference
If you need an introduction to working with .htaccess
and httpd.conf files. Check the specification at https://
httpd.apache.org/docs/current/howto/htaccess.html

Page of 27 275

https://github.com/h5bp/server-configs-apache
https://github.com/h5bp/server-configs-nginx
https://httpd.apache.org/docs/current/howto/htaccess.html

Recommended
First, let’s examine the stuff that you need within your htaccess:

Basic CORS Requests
To begin, let’s examine Cross-origin resource sharing (otherwise
known as CORS). Without getting into too much detail, it’s something
that prevents resources from another domain (or subdomain) from
being loaded into your domain (for security reasons like hijacking).

Page of 28 275

While this is great for scripts, it can cause all sorts of headaches for
things like images and typefaces. As such, I recommend including the
following into your server config to send CORS headers for images
and icons when browsers request it (and it also allows fonts to load).

<IfModule mod_setenvif.c>
<IfModule mod_headers.c>

<FilesMatch "\.(avifs?|bmp|cur|gif|ico|jpe?g|a?png|svgz?|webp)
$">

SetEnvIf Origin ":" IS_CORS
Header set Access-Control-Allow-Origin "*" env=IS_CORS

</FilesMatch>
</IfModule>
</IfModule>
<IfModule mod_headers.c>

<FilesMatch "\.(eot|otf|tt[cf]|woff2?)$">
Header set Access-Control-Allow-Origin "*"

</FilesMatch>
</IfModule>

Page of 29 275

Character Encoding
Ensuring that a site renders correctly is critical to the user experience.
The below code is fairly straightforward as it firstly ensures that each
file format is associated with the right MIME type, and then ensures
that all text (by default) renders in unicode to ensure that it's formatted
correctly when printed to the screen. There’s quite a few potential file
formats that can be used on the web, so the following code is quite
big, you can remove any formats you’ve no intention of including in
your project as that will make your htaccess file more performant.

AddDefaultCharset utf-8
<IfModule mod_mime.c>

AddType application/atom+xml atom
AddType application/json json map topojson
AddType application/ld+json jsonld
AddType application/rss+xml rss
AddType application/geo+json geojson
AddType application/rdf+xml rdf
AddType application/xml xml
AddType application/manifest+json webmanifest
AddType application/x-web-app-manifest+json webapp
AddType application/wasm wasm
AddType application/octet-stream safariextz
AddType application/x-bb-appworld bbaw
AddType application/x-chrome-extension crx
AddType application/x-opera-extension oex
AddType application/x-xpinstall xpi
AddType text/javascript js mjs
AddType text/cache-manifest appcache
AddType text/calendar ics
AddType text/markdown markdown md
AddType text/vcard vcard vcf
AddType text/vnd.rim.location.xloc xloc
AddType text/vtt vtt
AddType text/x-component htc
AddType image/x-icon cur ico

Page of 30 275

AddType image/avif avif
AddType image/avif-sequence avifs
AddType image/bmp bmp
AddType image/svg+xml svg svgz
AddType image/webp webp
AddType font/woff woff
AddType font/woff2 woff2
AddType application/vnd.ms-fontobject eot
AddType font/ttf ttf
AddType font/collection ttc
AddType font/otf otf
AddType audio/mp4 aac f4a f4b m4a
AddType audio/mpeg mp3
AddType audio/ogg oga ogg opus
AddType audio/midi mid midi kar
AddType video/mp4 f4v f4p m4v mp4
AddType video/ogg ogv
AddType video/webm webm
AddType video/x-flv flv

</IfModule>
<IfModule mod_mime.c>

AddCharset
utf-8 .appcache .atom .bbaw .css .geojson .htc .ics .kml .js .json .
jsonld .log .manifest .map .markdown .md .mjs .php .rdf .rss .top
ojson .txt .vcard .vcf .vtt .webapp .webmanifest .xloc .xml

</IfModule>

Page of 31 275

URL Rewrites
Part of maintaining a website is redirecting pages from one location
to another as URL’s change and your structure evolves. If your host
doesn’t allow FollowSymlinks, then just remove it and
SymLinksIfOwnerMatch should be enabled instead (though it will
unfortunately impact your site's performance). Some cloud hosts may
require RewriteBase and some servers may need RewriteOptions -
though only enable these if and when they are required by your host.

<IfModule mod_rewrite.c>
RewriteEngine On
Options +FollowSymlinks
Options +SymLinksIfOwnerMatch
RewriteBase /
RewriteOptions <options>
RewriteRule ^old/(.*)$ /new/$1 [R=301,NC,L]

</IfModule>

As demonstrated by the above, you replace both old and new with
the names of the folders you wish to redirect. For redirecting to an
individual file, the syntax is slightly different, but the effect is the same.

Redirect 301 /old/file.html https://example.com/new/file.html

Next, let’s rewrite our URL’s for security reasons, ensuring that when a
visitor browses to a page on your website, instead of getting an HTTP
version, they are redirected automatically to the HTTPS page. You
should provide an HTTPS certificate to allow secure browsing, if you
don't have one already, Lets Encrypt offers free ones, so there’s no
excuse not to have a privacy first approach to your projects. Below is
the code required to trigger the redirect from HTTP to HTTPS.

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{HTTPS} !=on
RewriteRule ^ https://%{HTTP_HOST}%{REQUEST_URI} [R=301,L]

</IfModule>

Page of 32 275

Here’s another useful code snippet; removing the www from the
website address. Why would you want to-do it? Well, the www
doesn’t really offer visitors anything except extra letters to type when
trying to find you, plus eliminating it reduces the chance of
duplication (being indexed at both site.com and www.yoursite.com)
which may hurt your SEO. Sounds good? Add the below into your
htaccess file and it’ll redirect visitors.

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{HTTPS} =on
RewriteRule ^ - [E=PROTO:https]
RewriteCond %{HTTPS} !=on
RewriteRule ^ - [E=PROTO:http]
RewriteCond %{HTTP_HOST} ^www\.(.+)$ [NC]
RewriteRule ^ %{ENV:PROTO}://%1%{REQUEST_URI} [R=301,L]

</IfModule>

Page of 33 275

If you want to always have a www at the start of your URL, use the
code below instead (you should only use one or the other, not both):

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{HTTPS} =on
RewriteRule ^ - [E=PROTO:https]
RewriteCond %{HTTPS} !=on
RewriteRule ^ - [E=PROTO:http]
RewriteCond %{HTTP_HOST} !^www\. [NC]
RewriteCond %{SERVER_ADDR} !=127.0.0.1
RewriteCond %{SERVER_ADDR} !=::1
RewriteRule ^ %{ENV:PROTO}://www.%{HTTP_HOST}%
{REQUEST_URI} [R=301,L]

</IfModule>

Error Prevention
Every website will encounter an error once in a while, the most
common of which is the page not found error, most well known as
404. The way in which servers handle errors is by directing any user to
a specified page upon identifying one of these exceptional events
occurring. Ensuring that your server pages have this handled is one of
the most common and critical elements of having a functional site
(we talk about this in Chapter 9). Alongside setting error pages, we’ll
also disable multiviews which prevents Apache from returning an
error as the result of a rewrite (unless required, it’s better off disabled).

Options -MultiViews
ErrorDocument 403 https://example.com/error.html#403
ErrorDocument 404 https://example.com/error.html#404
ErrorDocument 500 https://example.com/error.html#500
ErrorDocument 503 https://example.com/error.html#503

Page of 34 275

Security Settings
Keeping your website secure is one of the primary aims of the server
settings, it’s right up there with the performance settings as one of the
key things we can tweak within the htaccess files to make real-world
benefits to your app or website. With that in mind, let’s look at a few
of the things you can add that should directly benefit your visitors.

First, you’ll want to reduce the risk of any cross-site scripting or
content injection attacks using a content security policy. Consider that
the below code (which makes a solid default) is just an example of
what is possible, and there are plenty of header generators that will
build and validate your policy for you for free.

<IfModule mod_headers.c>
Header set Content-Security-Policy "default-src 'self';"

</IfModule>

Reference
To generate a content security policy for your website,
use the following free tool as it'll save you time https://
report-uri.com/home/generate/

Page of 35 275

https://report-uri.com/home/generate/

Another security setting that everyone should have in their settings is
the indexes option, which prevents anyone from being able to surf
through every directory of the website (as you can imagine, being
able to browse a site's structure isn’t a smart security move).

<IfModule mod_autoindex.c>
Options -Indexes

</IfModule>

Another thing you’ll want to-do is block access to all hidden files and
directories except for visible content within the well-known directory
(as that usually contains important stuff like the security.txt file, See
Chapter 26). Again, this is a great best practice to ensure that nothing
invisible that end-users shouldn't see - is accessible to visitors.

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{REQUEST_URI} "!(^|/)\.well-known/([^./]+./?)+$"
[NC]
RewriteCond %{SCRIPT_FILENAME} -d [OR]
RewriteCond %{SCRIPT_FILENAME} -f
RewriteRule "(^|/)\." - [F]

</IfModule>

Page of 36 275

Additionally, you’ll want to block access to any backup or source files
that may have been left on the server by IDE’s or text editors. The
reason behind this is that these may accidentally expose security
information to anyone who accesses them. Hopefully, you will do an
occasional sweep of your server to tidy away (delete) these files - in
addition to relying on these files being hidden by this security switch.

<IfModule mod_authz_core.c>
<FilesMatch "(^#.*#|\.(bak|conf|dist|fla|in[ci]|log|orig|psd|sh|sql|
sw[op])|~)$">

Require all denied
</FilesMatch>

</IfModule>

Now something to help prevent cross-origin data leaks and drive-by-
download attacks. If you have any executable code or uploadable
content, then this particular snippet will be mission-critical to your site.
There's not much to explain, it's just something you'll want to include.

<IfModule mod_headers.c>
Header always set X-Content-Type-Options "nosniff"

</IfModule>

If your site takes advantage of PHP, there’s an attack vector known as
fingerprinting, which allows the gaining of sensitive details about the
servers' PHP version (probing). To prevent this, include the below.

ServerTokens Prod
<IfModule mod_rewrite.c>

RewriteCond %{QUERY_STRING} PHP[a-z0-9]{8}-[a-z0-9]{4}-[a-
z0-9]{4}-[a-z0-9]{4}-[a-z0-9]{12} [NC,OR]
RewriteCond %{REQUEST_URI} =PHP[a-z0-9]{8}-[a-z0-9]{4}-[a-
z0-9]{4}-[a-z0-9]{4}-[a-z0-9]{12} [NC]
RewriteRule .* - [F,L]

</IfModule>

Page of 37 275

Another available security setting can help you prevent Denial of
Service attacks (DoS) relating to user-uploaded content by allowing
you to set the maximum file size allowed for uploads. For this case,
I’ve set it at 10mb, but you can choose whatever size you want.

LimitRequestBody 10240000

Finally, the below code will disable some response headers provided
by the server (or server software) offering key information that could
be exploited by hackers. Details include if you run Apache, the server-
side language (and version) you might be using, and more. This
should be included within any htaccess file, as it’s a best practice not
to leak data which could be used by bad actors to exploit your code.

ServerSignature Off
<IfModule mod_headers.c>

Header unset X-Powered-By
Header always unset X-Powered-By

</IfModule>

Reference

If you'e producing a website that is built using the CMS
WordPress, then there's a bunch of additional security
settings you should implement to avoid issues https://
www.buyhttp.com/27-most-useful-htaccess-file-tricks-
for-your-wordpress-website/

Page of 38 275

https://www.buyhttp.com/27-most-useful-htaccess-file-tricks-for-your-wordpress-website/

Performance Tweaks
Here’s what most people come looking for when they start to dive
into an htaccess file (aside from setting a custom 404 page). It’s the
performance settings, those handy tips and tricks, that will accelerate
their website or app from the laggy slug it began as to the whippet it
can potentially become. There’s a few really useful things you can set
from the server side, so let’s not waste any time and get tweaking.

First things first, let’s get gzip up and running. What’s gzip? It’s a type
of sever-side compression that gives you massive performance
benefits in terms of data transfer speeds of text-based files. Your files
are made as small as they can be, passed to the users' machine and
inflated at their end. This does have a hit in terms of processing
power (as the user's machine decompresses), but the benefits are
almost always worth it. So what code do we need to get going?

Page of 39 275

<IfModule mod_deflate.c>
<IfModule mod_setenvif.c>

<IfModule mod_headers.c>
SetEnvIfNoCase ^(Accept-EncodXng|X-cept-Encoding|
X{15}|~{15}|-{15})$ ^((gzip|deflate)\s*,?\s*)+|[X~-]{4,13}$
HAVE_Accept-Encoding
RequestHeader append Accept-Encoding "gzip,deflate"
env=HAVE_Accept-Encoding

</IfModule>
</IfModule>
<IfModule mod_filter.c>

AddOutputFilterByType DEFLATE text/text text/plain text/
vcard text/calendar text/vtt text/cache-manifest text/x-
cross-domain-policy text/vnd.rim.location.xloc text/x-
component text/markdown text/html application/
xhtml+xml text/xml application/xml application/rss+xml
application/atom+xml application/rdf+xml application/
vnd.google-earth.kml+xml text/css text/javascript text/
ecmascript application/javascript application/x-javascript
application/json application/ld+json application/
manifest+json application/schema+json application/
geo+json application/x-web-app-manifest+json
application/wasm font/collection font/eot font/opentype
font/otf font/ttf application/x-font-ttf application/vnd.ms-
fontobject image/svg+xml image/vnd.microsoft.icon
image/x-icon

</IfModule>
<IfModule mod_mime.c>

AddEncoding gzip svgz
</IfModule>

</IfModule>

Page of 40 275

There’s not much to the above, it first has a bit of code to force the
compression of accept-encoding headers, then it compresses all the
MIME types provided in the list (all the file types used in this book are
included in the list); and then finally it maps the gzip extension to the
svgz encoding type to ensure they uncompress successfully.

Next up, let's give our files a nice set of expires headers for the web
browsers cache. By doing so, the files which are updated regularly
will get refreshed in the cache as often as needed, and those which
rarely see new versions will stick around for longer, saving the visitor
valuable bandwidth (and you loading time between pages).

<IfModule mod_expires.c>
ExpiresActive On
ExpiresDefault "access plus 1 month"
<FilesMatch "\.(txt|log|html|php|markdown|md|json|geojson|
topojson|jsonld|manifest|webapp|appcache|webmanifest)$">

ExpiresDefault "access plus 0 seconds"
</FilesMatch>
<FilesMatch "\.(ic[os]|vcard|vcf|vtt|xml|atom|rss|rdf|kml)$">

ExpiresDefault "access plus 1 hour"
</FilesMatch>
<FilesMatch "\.(ico|cur|swf|pdf|doc[x]|xls[x]|ppt[x]|rtf)$">

ExpiresDefault "access plus 1 week"
</FilesMatch>
<FilesMatch "\.(css|js|m?js|otf|eot|tt[cf]|woff2?)$">

ExpiresDefault "access plus 1 month"
</FilesMatch>
<FilesMatch "\.(avifs?|crx|xpi|safariextz|htc|oex|wasm|svgz?|
bmp|gif|jpe?g|a?png|jxl|tif?f|web[mp]|opus|m4[av]|midi?|
mp[34]|og[agv]|aac|f4[abpv]|flv|wav|mov|avi|mk[av])$">

ExpiresDefault "access plus 1 year"
</FilesMatch>

</IfModule>

Page of 41 275

Finally, we’ll remove ETags as we don’t need them due to the fact all
of our files will be provided with expires headers (via caching) giving
them a long date before they are due for a refresh. This is better, as
controlling when files expire saves bandwidth. Below is the code:

<IfModule mod_headers.c>
Header unset ETag

</IfModule>
FileETag None

Bonus Scripts
OK, so what else is there? A few optional extras you can enable.

More CORS Requests
First, let’s have a look at CORS (Cross-origin resource sharing). You
know, that most annoying of errors that triggers developers across
the world to scream "why won't my file load" when they try to utilize
resources outside their main domain. You can set permissions for
CORS within your htaccess configuration using the below:

<IfModule mod_headers.c>
Header set Access-Control-Allow-Origin "sub.example.com"

</IfModule>

Or, if you really want, just allow all cross-origin requests. Though you’d
need to beware the danger in giving other sites unfettered access to
use your stuff without permission if you set the below:

<IfModule mod_headers.c>
Header set Access-Control-Allow-Origin "*"

</IfModule>

You can also allow access to the timing information in CORS requests
if you require it within htaccess. Again, only use if absolutely needed:

<IfModule mod_headers.c>
Header set Timing-Allow-Origin: "*"

</IfModule>

Page of 42 275

Internet Explorer
Yes, Apache even has something to help tackle the old gremlin that
has caused problems for developers since the early days of the web.
If you still have visitors browsing on Internet Explorer 8-10, then you’ll
want to include the following in your htaccess file, as it’ll trigger the
standard's mode automatically. It's a quick and clean IE compatibility
fix. If you have users on IE11, document modes were deprecated, so
standard's mode is triggered by default (though hopefully, you won’t
have any users remaining on Internet Explorer to need this).

<IfModule mod_headers.c>
Header always set X-UA-Compatible "IE=edge" "expr=%
{CONTENT_TYPE} =~ m#text/html#i"

</IfModule>

Page of 43 275

More Security Settings
We’ve previously covered some of the security settings I recommend
that you should add into an htaccess file to ensure that your server
remains as hardened as possible. Below, I’m going to cover a few of
the other things you could do if you wanted to further improve your
security settings, though these additions may have consequences for
how your project operates on the web (or is seen by others).

Firstly, we will cover the X-frame-options header, which works to
prevent clickjacking on any page it’s utilized on. Sounds like a great
idea, right? Well, the problem is that if you utilize it on every page of
your site, it’ll break non-malicious framing of your pages (like Google
Image search or social network links). It does have its uses though, it's
worth using this on pages that lets visitors purchase anything or
modify documents (where security must be heightened).

<IfModule mod_headers.c>
Header always set X-Frame-Options "DENY" "expr=%
{CONTENT_TYPE} =~ m#text/html#i"

</IfModule>

Even with HTTPS redirection enabled (which we covered earlier in the
chapter), there is still a window of opportunity between the initial
HTTP connection and the redirect that occurs, in which an attacker
could downgrade or redirect a users' request. By using HSTS headers,
a browser will only browse via HTTPS, regardless of what the user
types. The downside is that if you experience any certificate issues,
the user will error out and any HTTP attempt will fail. This is why you
must be sure you want to trigger this, as it’s non-revokable.

<IfModule mod_headers.c>
Header always set Strict-Transport-Security "max-
age=16070400; includeSubDomains" "expr=%{HTTPS} == 'on'"
Header always set Strict-Transport-Security "max-
age=31536000; includeSubDomains; preload" "expr=%{HTTPS}
== 'on'"

</IfModule>

Page of 44 275

Once you’re all setup, submit your site at https://hstspreload.org/

The below code is offered in the HTML5 boilerplate as an optional
extra to help prevent cross-site scripting attacks. However, as noted in
the documentation, it’s not foolproof and shouldn’t be relied upon
fully. I’ve included it as it could be useful for scripting beginners to
deflect some basic attacks, but it shouldn't be relied upon as sanitizing
code and form inputs and validating syntax is the best practice. Don’t
let yourself become a target and use the below alongside other tools.

<IfModule mod_headers.c>
Header always set X-XSS-Protection "1; mode=block" "expr=%
{CONTENT_TYPE} =~ m#text/html#i"

</IfModule>

Page of 45 275

https://hstspreload.org/

Another optional security snippet is setting a referral policy, which can
help mitigate information leakage. Using the referrer-policy header, it
targets resources that can request other resources. This sounds great,
but you could use a more targeted approach to prevent leakage by
using the no-referrer header (though this may impact analytics apps).

<IfModule mod_headers.c>
Header always set Referrer-Policy "strict-origin-when-cross-
origin" "expr=%{CONTENT_TYPE} =~ m#text\/(css|html|
javascript)|application\/pdf|xml#i"

</IfModule>

Modern browsers have (built into them) the ability to prevent users'
credentials being stolen via JavaScript; as they disable the Trace
method by default. However, other methods of sending Trace
commands can be exploited by attackers. While these situations are
becoming rare due to Java, Flash (and other web plugins) being
terminated (and disabled) at the browser point, you may wish to
enable this if you utilize such a plugin via your app or site.

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{REQUEST_METHOD} ^TRACE [NC]
RewriteRule .* - [R=405,L]

</IfModule>

Page of 46 275

Finally, there is a permission's policy that exists within the header
syntax that mitigates browser access to certain hardware features.
While it's up to individual browsers to block such requests, it's useful
for the privacy conscious individual that doesn't want Geodata or
camera access being triggered accidentally (as an example).

<IfModule mod_headers.c>
Header always set Permissions-Policy
"accelerometer=(),autoplay=(),camera=(),display-
capture=(),document-domain=(),encrypted-
media=(),fullscreen=(),geolocation=(),gyroscope=(),magnetom
eter=(),microphone=(),midi=(),payment=(),picture-in-
picture=(),publickey-credentials-get=(),screen-wake-
lock=(),sync-xhr=(self),usb=(),web-share=(),xr-spatial-
tracking=()" "expr=%{CONTENT_TYPE} =~ m#text\/(html|
javascript)|application\/pdf|xml#i"

</IfModule>

Extra Performance
Along with the settings that were mentioned earlier, there are a few
additional things you can do to improve your app or website's overall
performance. Just be aware that what's listed below are optional
extras, and they will either have an impact on how you deploy your
site or you will find there are additional things you need to-do for
them to be useful, which is why I’ve listed them here as extras (due to
their technical nature). Whether they are worth it is entirely up to you.

Page of 47 275

If you’re intent on using the more performant Brotli over gzip to
compress content, you can use the below htaccess code snippet to
serve it via your server. The one thing you’ll need to-do is ensure that
you’ve generated Brotli encoded files to serve them using this
method. This means compressing before deploying.

<IfModule mod_headers.c>
RewriteCond %{HTTP:Accept-Encoding} br
RewriteCond %{REQUEST_FILENAME}\.br -f
RewriteRule \.(css|ics|js|json|html|svg)$ %{REQUEST_URI}.br [L]
RewriteRule \.br$ - [E=no-gzip:1]
<FilesMatch "\.br$">

<IfModule mod_mime.c>
RemoveLanguage .br
AddType text/css css.br
AddType text/calendar ics.br
AddType text/vcard vcf.br
AddType text/javascript js.br
AddType application/json json.br
AddType text/html html.br
AddType image/svg+xml svg.br
AddCharset utf-8 .css.br .ics.br .js.br .json.br

</IfModule>
Header append Vary Accept-Encoding

</FilesMatch>
AddEncoding br .br

</IfModule>

Page of 48 275

If you are into pre-compressing content, and you’re not into using
Brotli, you could instead serve gzip files (if you’ve encoded them).

<IfModule mod_headers.c>
RewriteCond %{HTTP:Accept-Encoding} gzip
RewriteCond %{REQUEST_FILENAME}\.gz -f
RewriteRule \.(css|ics|js|json|html|svg)$ %{REQUEST_URI}.gz [L]
RewriteRule \.gz$ - [E=no-gzip:1]
<FilesMatch "\.gz$">

<IfModule mod_mime.c>
RemoveType gz
AddType text/css css.gz
AddType text/calendar ics.gz
AddType text/vcard vcf.gz
AddType text/javascript js.gz
AddType application/json json.gz
AddType text/html html.gz
AddType image/svg+xml svg.gz
AddCharset utf-8 .css.gz .ics.gz .js.gz .json.gz

</IfModule>
</FilesMatch>
AddEncoding gzip .gz

</IfModule>

This next Apache feature is only something you should enable if you
have no alternative. If you find that browser data saving tools (such as
those on mobile browsers), proxy tools, or other user "page altering"
agents are damaging your website's ability to render (and that's not
the aim of those tools to-do so), you can utilize the below to turn off
content transformation (the ability to re-write HTML). Note that this
could cost your visitors some much-needed performance!

<IfModule mod_headers.c>
Header merge Cache-Control "no-transform"

</IfModule>

Page of 49 275

Finally, if you’re not using any kind of build system (you should be
using something like Git to manage projects), or if you don’t have
some kind of version control system in place (again, this is something
you should have), there is a basic Apache code snippet which can
help cache-bust issues with new releases. Though it’s better to have a
proper versioning system in place, this makes a handy alternative.

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.+)\.(\w+)\.(avifs?|bmp|css|cur|gif|ico|jpe?g|m?js|
a?png|svgz?|webp|webmanifest)$ $1.$3 [L]

</IfModule>

Reference
If you want even more tips and tricks than this chapter
provides, one great resource to check is AskApache.
https://www.askapache.com/htaccess/

Page of 50 275

https://www.askapache.com/htaccess/

Other Information
Before we leave this chapter, there are a few other things in Apache
we should probably cover in terms of use cases which might come in
handy when you’re running your site or app. Hopefully these snippets
will come in handy and help you manage your site more effectively.

First, let's talk about bad actors. There may come a time when you
need to block an individual (or numerous people from visiting your
site) as they’re abusing your service. The below snippet should work
well, blocking one IP address at a time, or block an entire range of
addresses in one go. To find an IP, check the server logs for details.

order allow,deny
Block 1 IP
Deny from 11.22.33.44
Block IP Range
Deny from 11.22.33.44 99.88.77.66
allow from all

Moreover, if you want to prevent image hotlinking on your project,
there’s a handy script you can use; though in these social networking
days you might lose a few fans if visitors cannot share their love of
your craft - it's just a bit less annoying than blocking right click.

Page of 51 275

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{HTTP_REFERER} !^$
RewriteCond %{HTTP_REFERER} !^http://
(www\.)example.com/.*$ [NC]
RewriteRule \.(avifs?|a?png|gif|jpe?g|svgz?|webp)$ https://
example.com/nolink.gif [R,L]

</IfModule>

Reference

If you would like to automate creating an htaccess file,
you can at https://assetconfig.com/ and for NginX files
Digital Ocean has a tool available at https://
www.digitalocean.com/community/tools/nginx

Page of 52 275

https://assetconfig.com/
https://www.digitalocean.com/community/tools/nginx

Chapter 3:
Ensuring your sales routes are secure
Ensure that advertisement fraud is reduced using a simple SEO
friendly text file to verify sales channels.

Page of 53 275

ads.txt
The Authorized Digital Sellers file (or Ads for short) is one of the more
recent assets to be adopted in web development, but don’t assume
that because it’s a late bloomer, it's not an important part of the web.
Recent statistics show that within the top 1,000 most visited websites,
over 50% utilize this file already (and it’s growing rapidly). Considering
this has only been around since 2017, it sounds widespread enough to
be taken seriously, so let’s find out what it does and if you need it.

Well, as you might imagine with a name like ads.txt it’s all about online
advertising, specifically it's about helping to prevent counterfeit ads
from getting through the net. See, by having a list of authorized sellers
within this file, it reduces the chance of unauthorized reselling via
domain spoofing (ad fraud) occurring. One of the great things about
the ad’s file is that Google has been quick to adopt it, so it already has
major ad backing and recognition within the advertising industry.

Page of 54 275

This document won’t protect you from invalid traffic or repeat click
fraud (which advertisers have their own ways of detecting), but the
good thing is it’s perfectly compatible with any existing systems you
have in place to tackle other forms of ad fraud. So if you have adverts,
it’s a given you’ll want to implement it on your site. Sounds like a plan?
Get started by creating an ads.txt file in your root directory (you can
also include it in subdomains additionally if you serve ads there).

Comments
As with many text files, you can include comments in your ads file by
preceding your text with a hash (#) character. This can be useful for
keeping track of which advertisers belong to which groups you sell
too. The below is a pretty basic example of what you could include.

This is a comment

Records
Each record will consist of four variables, as denoted below. To help
you fill in the four variables, a table is also provided on the next page,
listing what you need to put within each section. For each advertiser
you trust, you will need to list them individually using the four
variables provided below. You can provide as many as you require.

<V1>, <V2>, <V3>, <V4>

Each variable will be comma separated. An example is shown below
to give you an idea of what a complete advertiser record looks like:

example.com, 12345, DIRECT, f794e0a46588c21f

Reference
For a comprehensive guide to the ads.txt format, you
can read the full specification and explainer guide at
https://iabtechlab.com/ads-txt/

Page of 55 275

https://iabtechlab.com/ads-txt/

Extensions
The ads.txt file supports a few extensions which might be useful to
developers, which have to be mentioned too. The first of which is if
you are using subdomains. If you redirect your main domain to a
subdomain and want advertisers to know that the subdomain is more
important than the root domain, you should add the below into your
ads.txt in your root domain, and it will bounce advert requests to the
ads.txt file on your subdomain (yes, you need two files) without issue.

SUBDOMAIN=sub.example.com

Next, there is a property for ads.txt, which is intended for when you
are serving advertisements from a partner. By using this property, you
can avoid having to list every domain (relationship) you have with that
advertising partner, as you'll need to declare the domain that your
website is connected to (in terms of authorizing monetization of ads).

INVENTORYPARTNERDOMAIN=example.com

Next, there is a property which simply allows you to specify what
business website owns the website or application. If there is more
than one owner, then the first (or primary) owner should be listed. It's
highly recommended that this property be included.

OWNERDOMAIN=example.com

Variable Example Required Description

<V1> example.co
m

Yes Domain name of the system
that advertisers connect too.

<V2> 12345 Yes The publishers account ID
used in ad transactions.

<V3> DIRECT Yes Either use DIRECT or RESELLER,
who controls the account.

<V4> f794e0a4658
8c21f

No An ID for an advert system
within a certificate authority.

Page of 56 275

Next, there is a property which allows you to specify the monetization
partner of the domain listed. This is an optional property that should
exclusively be used for a seller who isn't the publisher of the work.

MANAGERDOMAIN=example.com

Finally, while it’s preferable to use the humans.txt file for contact
details (and we’ll talk about this useful format later in the book), the
ads.txt file has a property that can be used to list advertiser contact
information. Please bear in mind it could potentially be scraped and
targeted by spammers as it will be stored in plaintext, so whether you
do want to provide an email address in this variable is up to you.

CONTACT=email@example.com

And that’s just about all there is to it. A text file with comments, four
variables and a couple of extensions. It’s a simple specification that
has widespread adoption and reduces the amount of advertising
fraud in the web industry. A very useful file if you rely on this form of
income on your website or app. All you’ll need to-do in the long run is
ensure that you maintain it (weeding out redundant ads) over time.

Reference
For details relating to how Google handles ads.txt files
you can check this guide https://support.google.com/
adsense/answer/7532444?hl=en-GB

Page of 57 275

https://support.google.com/adsense/answer/7532444?hl=en-GB

Chapter 4:
Getting your web project eco-friendly
Use this emerging standard to both track and validate your businesses
digital green credentials.

Page of 58 275

carbon.txt
Having a performant website these days is important for ensuring that
your site loads well on a variety of devices. But being performant has
additional benefits, such as being able to make your website or app
eco-friendly - and by that, I mean that it's energy efficient and ethical
in how it both gets and uses the electrical resources it has access too.

Perhaps it’s something you’re interested in, or perhaps it’s not top of
your agenda, but it’s a fact that the web burns through a heck of a lot
of electricity. Whether server-side (processing scripts or loading data)
or client-side (via hardware use), being able to reduce the carbon
impact of your site can help save the earth, users battery life, and
power bills. With this in mind, it’s time to introduce you to carbon.txt.

Using this file, visitors will be able to track the path "upstream" from
provider to provider, identifying the route generated energy travels;
(starting from your host) to show a sustainability trail. As it stands, this
file isn’t utilized by any third parties like search engines, however,
visitors who are interested in your sites' transparency may go looking
for this file (if they are aware of it) so it may be useful.

Page of 59 275

While it’s still a draft specification and hasn’t seen much activity lately,
by including this file in your base directory (with the necessary code
below) you can be transparent about how your servers are powered,
and how green your site really is. The formatting follows other text
files such as a robots file or, as in the previous chapter, the ads.txt file.

Comments
As with many text files, you can include comments in your carbon file
by preceding your text with a hash (#) character. You can also use
comments to provide additional details about the provider, such as
whether they offset energy use via carbon credits, or power their sites
using renewable energy such as wind, solar or water. You could even
provide any percentages involved (in mixed cases) for visitors.

This is a comment

Upstream
Every record will need to provide two space separated variables,
which are denoted below. To assist you filling in the two variables, a
table has been provided, listing what you need to put in each field.

You’ll have to provide one set of values for each host you wish to
declare any eco credentials for. If you would rather not rely on others
having their own carbon file, you could do your research and log the
full path of your energy journey including any CDN’s, third parties, or
payment portals in the file (be sure to document using comments).

<V1> <V2>

Reference
For a comprehensive guide to how a carbon.txt file
should be formatted, check the specification at https://
github.com/thegreenwebfoundation/carbon.txt

Page of 60 275

https://github.com/thegreenwebfoundation/carbon.txt

Finally, I’ve included a code sample below to give you an idea of
what to expect in your file. We must enclose the word upstream in
squared brackets on a new line. Next, include the space separated
variables to show how visit comes from a green pathway. This is
arguably one of the smallest files you’ll ever produce. Though, it’ll take
time to-do the necessary research if you want to be inclusive.

[upstream]
example.com london

And that concludes this chapter. Hopefully, this file will gain adoption
on a wider level in the future, and with the world focusing heavily on
issues like climate change, I suspect this will be the case. Until then, it’s
an optional file that can help you become more transparent about
your project's sustainability. And as a basic file only takes a minute to
build, it’s just worth adding into your next project as it doesn’t have
any downsides in terms of performance and needs little maintenance.

Variable Example Required Description

<V1> example.co
m

Yes URL of your hosting provider.

<V2> london No Datacenter that is eco-friendly.

Reference
To find out how green any third party tools or scripts a
site uses are, use: https://aremythirdpartiesgreen.com/

Page of 61 275

https://aremythirdpartiesgreen.com/

Chapter 5:
Show your development progress with ease
Build a changelog that identifies additions, changes, deprecations,
removals, fixes, and security patches.

Page of 62 275

change.log
When you create an app or website with app-like functionality (say a
SAAS), it’s important to let users know what developments are being
made to the product. In an offline app, this is usually done through a
list provided in a "Check for updates" feature, or through notifications
in the app store, or even a list of updates made on the app's site.

Reference
The best overview of changelogs which I consider the
gold standard is here https://keepachangelog.com/

Page of 63 275

https://keepachangelog.com/

For a website or app that primarily lives online and changes regularly,
tracking changes can be trickier, yet is just as essential for many
visitors. As such, we need a centralized method of giving our visitors
simple, easy to find and read details of what's new or updated and
where to locate it. Enter the change.log - a plaintext file that sits in
your base directory and acts as a clean, maintained, human-readable
guide to the entire history of your digital product or service.

Versioning
First things first, a changelog isn’t intended to be where you dump git
logs, this text file should be for people, not machines. It’s curated and
cleaned up, so users can read it quickly (with links to read more if they
choose to). There should be an entry for each version of a product,
with the release date (YYYY-MM-DD) displayed alongside. Moreover,
ensure the latest version always comes first in the list of changes.

Page of 64 275

Furthermore, you should try to work with semantic versioning, which
works off the principle of vA.B.C with each being replaced with one
of the following variables (the table below shows its meaning):

Changes
Additionally, when you’re entering the details of what’s changed to
your product, similar types of changes should be grouped together,
I’ve provided a list of the various variables in the table below:

Version Type Description

A Major You make incompatible API changes.

B Minor You add backward compatible functionality.

C Patch You fix bugs that don’t break existing functionality.

Change Description

Added New features added into the product.

Changed Changes to existing functionality.

Deprecated Soon-to-be removed product features.

Removed Product features that have been removed.

Fixed Bug fixes or patches to the product.

Security Vulnerabilities which have been resolved.

Unreleased Features that will appear in future versions.

Page of 65 275

Summary
And that’s about it. Aside from ensuring you label your document as a
changelog at the top of the file to ensure visitors know what they’re
going to be reading, there’s not much else to know. Below I’m going
to provide you with a template change.log which contains various
useful snippets for a first-time launch (based on the files in this book).

Changelog - Website Name Here

[Unreleased]
- N/A

1.0.0 - YYYY-MM-DD
Added
- change.log File with transparent version tracking.
- Design System compiled to match product expectations.
- .htaccess File with Headers, Rewrites, Security, & Performance
modules.
- index.html & error.html File with metadata & content.
- Licensed SVG images along with any generated external JPEG &
PNG.
- style.css with Base, RWD, Animate, Modes, Print, A11y & Quirks
sheets.
- Typeface for Personal brand (x1 license per site).
- Typeface from Google Fonts (self hosted).
- LICENSE ADDED - Check: https://website.com/license.html
- humans.txt File with Website creation credits.
- security.txt File with contact information.
- robots.txt File with integrated sitemap link.
- favicon.ico File with PNG's for iOS, Android, etc.
- site.webmanifest File & browserconfig.xml for PWA's.
- event.ics File with Calendar events for the website.
- vcard.vcf File with Contact information for clients.
- rss.xml, atom.xml, feed.json & feed.opml for syndication.
- dublin.rdf, foaf.rdf, geo.kml & geo.rdf for DCMI metadata.
- sitemap.xml File with page listings and IA for site.

Page of 66 275

- opensearch.xml File with basic Google search integration.
- subtitles.vtt File with accessible videos across site.
- carbon.txt File for verifying eco-friendly credentials.
- p3p.xml, dnt-policy.txt, crossdomain.xml & clientaccesspolicy.xml
for security.
- PICS.rdf & powder.xml for child-friendly platforms.
- script.js File with Service Worker & linted, minified JavaScript.
- Performance metrics indexed and optimizations provided.

[Guide]
- Added: New features.
- Changed: Altered functionality.
- Deprecated: Disappearing features.
- Removed: Removed features.
- Fixed: Bug fixes.
- Security: Any vulnerabilities.

Page of 67 275

Chapter 6:
Keeping Microsoft Silverlight functional
Now obsolete due to Microsoft Silverlight being redundant, you can
build the streaming policy file here.

Page of 68 275

clientaccesspolicy.xml
When deciding to write this book, chapters such as this were a matter
of debate whether I should even include them at all. On one hand,
this file has played a critical part in many peoples sites for the best
part of the last decade because of the technology behind them.

Yet, within the next year (October 12, 2021 to be exact), the framework
this supports - and with it the file, will become deprecated. Should
this book cover obsolete files? Well, they’re a part of the web’s
history, and some people dealing with old systems may come across
(and have to support) them. So I say yes - though do so tentatively.

With this in mind, allow me to introduce you to clientaccesspolicy.xml,
which is quite a mouthful of a filename. It’s another one for the root of
your app or websites structure, though instead of being a text file it
uses the more complex XML syntax (think a cross between HTML and
JSON, but with stricter rules as if you make a typo it won't work).

Reference

If you would like to learn more about Silverlight, read
the Wikipedia article at https://en.wikipedia.org/wiki/
Microsoft_Silverlight and then visit it's developer portal
at https://www.microsoft.com/silverlight/

Page of 69 275

https://en.wikipedia.org/wiki/Microsoft_Silverlight
https://www.microsoft.com/silverlight/

This file has one sole purpose, which is to allow Microsoft Silverlight
apps - an alternative to the popular Flash format, to send limited
cross-site requests. Why would you want to-do this? Well out-of-the-
box, Silverlight only allows same-site requests except for images and
media. This means that apps can’t connect to CDN’s or subdomains.
It’s done for security to prevent cross-site forgery exploits.

Boilerplate
Do you use Microsoft Silverlight, if not, skip this chapter. Do you have
visitors on IE11 or lower? If not, skip this chapter. Do you only need
images or media? If so, you don’t need this file. If you do meet the
criteria for this niche format, just put the below code into your file "as-
is". There aren’t any variables that you’ll need to edit to get it working.

<?xml version="1.0" encoding="utf-8"?>
<access-policy>

<cross-domain-access>
<policy>

<allow-from http-request-headers="SOAPAction">
<domain uri="*"/>

</allow-from>
<grant-to>

<resource path="/" include-subpaths="true"/>
</grant-to>

</policy>
</cross-domain-access>

</access-policy>

Reference

To learn more about configuring a crossdomain.xml
file, read the following https://docs.microsoft.com/en-
us/previous-versions/windows/silverlight/dotnet-
windows-silverlight/cc197955(v=vs.95)

Page of 70 275

https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc197955(v=vs.95)

Chapter 7:
Allow Adobe Flash to run despite retirement
Now obsolete due to Adobe Flash's retirement, you can still build the
streaming allowance policy file here.

Page of 71 275

crossdomain.xml
Unlike the previous chapter’s content which followed a file that is due
to be deprecated later this year, this chapter examines a file that has
just been deprecated at the start of the year (on 12 Jan 2021). The
crossdomain.xml document, which is another XML file that gets put
the in the base directory of your website, serves the same purpose as
clientaccesspolicy.xml (preventing cross-site forgery). Though rather
than working explicitly for Microsoft Silverlight, its primary purpose is
to work for the now deprecated (end-of-life) Adobe Flash format.

Adobe Flash, had a much wider user-base than Silverlight, so there
may be more user-cases for the crossdomain.xml file (if your SWF
needed to access any files beyond the primary domain). But as
Adobe has ceased support for the format, browser vendors are now
disabling support and the file's use has quickly become limited.

Reference

To understand the difference between Silverlight and
Flash XML files, visit https://social.msdn.microsoft.com/
Forums/SqlServer/en-US/e7241343-3408-478f-aac7-
f381b9ba21c8/difference-between-
clientaccesspolicyxml-and-crossdomainxml

Page of 72 275

https://social.msdn.microsoft.com/Forums/SqlServer/en-US/e7241343-3408-478f-aac7-f381b9ba21c8/difference-between-clientaccesspolicyxml-and-crossdomainxml

If you find a use for this file on a system that still needs to utilize Flash,
perhaps say an old app that can’t afford to transition, or a game built
in the format that needs preserving; being able to use this file will be
useful. While the specification does allow a fair amount of tweaking,
to keep things simple I’m going to provide a few templates that
Adobe themselves offer as boilerplates, after all, it’s a rare occasion
when you’ll need to use this file in a real-world situation any more.

Reference

For a comprehensive guide to crossdomain.xml files,
check the specification at https://www.adobe.com/
devnet-docs/acrobatetk/tools/AppSec/
CrossDomain_PolicyFile_Specification.pdf

Page of 73 275

https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/CrossDomain_PolicyFile_Specification.pdf

Moderate
The below example allows Flash to access data from the root domain,
including any subdomains or Adobe Flash servers, via SOAP:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM "http://www.adobe.com/
xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>

<site-control permitted-cross-domain-policies="master-only"/>
<allow-access-from domain="*.example.com"/>
<allow-access-from domain="www.example.com"/>
<allow-http-request-headers-from domain="*.adobe.com"
headers="SOAPAction"/>

</cross-domain-policy>

Safest
The below example is the most restrictive policy, as it’ll block your
Flash files from requesting data from any domain or server:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM "http://www.adobe.com/
xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>

<site-control permitted-cross-domain-policies="none"/>
</cross-domain-policy>

Page of 74 275

Dangerous
The below example is the least restrictive policy, as it’ll allow your
Flash files to request data from any domain or server they choose:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM "http://www.adobe.com/
xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>

<site-control permitted-cross-domain-policies="all"/>
<allow-access-from domain="*" secure="false"/>
<allow-http-request-headers-from domain="*" headers="*"
secure="false"/>

</cross-domain-policy>

Using one of these three pieces of code, you should cover any use-
case of Flash wanting to access external files on a website. Aside from
that, there’s nothing else that needs to be said. It’s a simple basic file
that serves one basic function, so you can move to the next chapter.

Reference

For a quick start guide to the specification and how to
implement crossdomain.xml, check https://
www.adobe.com/devnet-docs/acrobatetk/tools/
AppSec/xdomain.html

Page of 75 275

https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/xdomain.html

Chapter 8:
Optimizing semantic metadata for RDF
If you rely on RDF metadata, use this generator to quickly build a
profile index of your site for SEO purposes.

Page of 76 275

dublin.rdf
Getting noticed is hard, especially when your site is one among the
sea of millions in search engine results out there. One of many ways
to get yourself visible is through search engine optimization, which is
a method of using techniques to help those looking for you find you
easier. Doing this ethically is tricky, but using rich metadata remains
one of the most popular ways of organically signposting yourself.

Recently, the most popular method of using metadata is via microdata
(such as schema) or the older pattern of microformats, which works
equally well. Yet, a more complex but solid choice that is recognized
by search engines exists that we can use to build an index file for your
app or website that provides a profile all in one location.

Page of 77 275

RDF is a format that is a lot like XML, very strict in its nature and prone
to glitching on any syntax error - which is probably why it didn’t have
a very high adoption rate. Yet, for simple files that do one simple task,
it’s not going to be too troublesome to utilize its benefits. For this file,
we’re going to use the Dublin Core metadata initiative, which we
examined in the first chapter’s meta section (as it’s a solid standard).

Reference
So what do you need to-do? Well, first you’ll want to create a file
called dublin.rdf and place it somewhere on your site. Unlike previous
files, no browser seeks the file automatically, so there’s no need for it
to be in the base directory unless you want it to be there. Though, for
this reason, you will need a reference in the head of your HTML files
so search engines can find and take advantage of the metadata when
indexing your data. The exact code you'll need is provided below.

<link rel="author" type="application/rdf+xml" href="dublin.rdf">

Reference

For more information about DCMI, check the spec at
https://www.dublincore.org/specifications/dublin-
core/dcmi-terms/ or read this handy usage guide at
https://www.dublincore.org/specifications/dublin-
core/usageguide/2000-07-16/simple-html/

Page of 78 275

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/usageguide/2000-07-16/simple-html/

Example
Next, you’ll want to produce the code for the file itself. As I mentioned
before, RDF can be a tricky file format, so I’ve produced a boilerplate
below that you can work from. In addition, you’ll find a table which
showcases all the possible variables you can tweak in your profile.

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/">

<rdf:Description rdf:about="https://example.com/">
<dc.title>Title</dc.title>
<dc:creator>Name</dc:creator>
<dc.contributor>Name</dc.contributor>
<dc:date>YYYY-MM-DD</dc:date>
<dc:description>Description</dc:description>
<dc.type>Category</dc.type>
<dc.subject>Subject, Subject</dc.subject>
<dc:language>en</dc:language>
<dc.coverage>Location</dc.coverage>
<dc:publisher>Publisher</dc:publisher>
<dc:source>https://example.com/</dc:source>
<dc.relation>https://example.com/</dc.relation>
<dc.rights>https://example.com/</dc.rights>
<dc.identifier>000-0-00-000000-0</dc.identifier>

</rdf:Description>
</rdf:RDF>

Page of 79 275

Variable Description

dc.contributor
If you have multiple contributors to a
resource, you can include them here.

dc.coverage
Include place names or coordinates to
show the scope of the document.

dc.creator
The person or business responsible for
the app or site will be added here.

dc.date
Using YYYY-MM-DD you can provide a
precise timestamp for content.

dc.description
Offer a brief explanation or a table of
contents of what the content is about.

dc.format
If the content isn’t in HTML (default), use
this to offer the file MIME type.

dc.identifier
Provide a link to a URL, DOI, ISSN or ISBN
which references the content.

dc.language
Provide details of the locale in which the
content is offered to visitors.

dc.publisher
Provide details of the organization or
individuals responsible for content.

dc.relation
If there are any links which connect to
the content, provide the reference.

dc.rights
License information, copyright details or
links to agreements are used here.

dc.source
If the content cites any sources, you can
credit the references with this tag.

dc.subject
Offer details of the content’s subject
using semicolon separated strings.

Page of 80 275

Summary
Having this file as part of your organic marketing strategy could make
a difference, though, as a word of caution. Ensure your content is
relevant, and you don’t keyword stuff phrases which don’t appear on
your pages; otherwise you may suffer penalties from the search
engines (so only provide the above variables if they apply to you).
The key benefit of the RDF approach over countless meta tags in your
page headers is this will be more performant, cache better, and you
can update your metadata easier, having it apply across your project.

dc.title
Give the article title without branding so
it can be read by aggregators.

dc.type
Shows content categories, functions,
genres, or aggregation levels.

Variable Description

Page of 81 275

Chapter 9:
Tackle common server errors together
Mistakes happen, so use this error page (and it's anchor points) to
cover your problematic endpoints.

Page of 82 275

error.html
If there's one thing we learn about code (and life), it’s that mistakes
will happen. When maintaining a website or app; a broken link, a quirk
of a server, or a wrongly entered password could be all that will stand
between your visitors and an error page. Therefore, it’s important
when users stumble upon such problems that we intercept them and
try to help them find their way to either the information they wanted
to locate on your website, or something equally useful or valuable.

Many websites have separate error pages for each type of quirk that
can occur, from the well known 404 (page not found) to the 500
(internal server error). My personal preference, and one I think is well
worth adopting, uses a single page with fragment links for each type
of error (reducing HTTP overheads and maintaining errors easier). This
is the type of page we'll be building below, and it uses a combination
of pure HTML and CSS. There is no requirement for JavaScript.

Page of 83 275

Configuration
Because we’ll be controlling error messages within this file, we first
need to ensure that the server redirects to the page (and the correct
fragment error identifier) when an issue occurs. If you use Apache,
edit your htaccess file (or http.conf file) with the below if you haven’t
already done so, otherwise any errors will use the server default:

Options -MultiViews
ErrorDocument 400 https://example.com/error.html#400
ErrorDocument 401 https://example.com/error.html#401
ErrorDocument 403 https://example.com/error.html#403
ErrorDocument 404 https://example.com/error.html#404
ErrorDocument 408 https://example.com/error.html#408
ErrorDocument 408 https://example.com/error.html#410
ErrorDocument 429 https://example.com/error.html#429
ErrorDocument 500 https://example.com/error.html#500
ErrorDocument 501 https://example.com/error.html#501
ErrorDocument 502 https://example.com/error.html#502
ErrorDocument 503 https://example.com/error.html#503
ErrorDocument 504 https://example.com/error.html#504
ErrorDocument 505 https://example.com/error.html#505
ErrorDocument 508 https://example.com/error.html#508

If you use another web server such as NginX or IIS, they'll use another
method of delivering custom error pages. You should always refer to
the manual for that server software to get it working. You should also
try to only include the error codes you feel your app or website is
going to need (to avoid unnecessary overhead in your error.html file).

Reference

For errors, use https://github.com/h5bp/server-
configs-apache/blob/master/dist/.htaccess (Apache),
https://github.com/h5bp/server-configs-nginx/blob/
master/h5bp/errors/custom_errors.conf (NginX), and
https://www.bruceclay.com/blog/microsoft-iis-
custom-404-error-page-configuration/ (IIS).

Page of 84 275

https://github.com/h5bp/server-configs-apache/blob/master/dist/.htaccess
https://github.com/h5bp/server-configs-nginx/blob/master/h5bp/errors/custom_errors.conf
https://www.bruceclay.com/blog/microsoft-iis-custom-404-error-page-configuration/

Webpage
Create an error.html file in the base folder of your app or website so
that visitor errors are redirected to the top directory. Unlike the rest of
your product, this file should be self-contained to avoid suffering any
errors if say any external images, CSS or other resources disappear.

Finally, let's get building some HTML and CSS. We’ll start by adding
the necessary HTML, leaving a gap between the style tags for the CSS
and another gap for each of the error content between the main tags:

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,
initial-scale=1">
<title>Error - Product</title>
<meta name="description" content="Description.">
<style>

</style>
</head>
<body>

<header>
<h1>Product</h1>

</header>
<main>

</main>
<footer>

<p>Copyright, 2021.</p>
<p>Built by Your Name.</p>

</footer>
</body>

</html>

Page of 85 275

Error Sections
Next we’ll add the individual error messages which appear within the
main tags. As you can see, I’ve decided to keep things simple by
giving each their number, a title, and a description for users of what's
happened. You could go much further for visitors by adding useful
links, contact details, downtime detectors, useful reading and more.

<article class="error" id="400">
<h2>400</h2>
<h3>Bad Request</h3>
<p>Your browser sent a request that this server could not
understand. Try Again.</p>

</article>
<article class="error" id="401">

<h2>401</h2>
<h3>Unauthorized</h3>
<p>You cannot access this page until you have logged in and
authenticated.</p>

</article>
<article class="error" id="403">

<h2>403</h2>
<h3>Access Forbidden</h3>
<p>Sorry, you'll need to login to visit this area.</p>

</article>
<article class="error" id="404">

<h2>404</h2>
<h3>Resource Not Found</h3>
<p>You made a wrong turn. Lets try a different link.</p>

</article>
<article class="error" id="408">

<h2>408</h2>
<h3>Request Timeout</h3>
<p>The website took too long to respond. Try again later.</p>

</article>
<article class="error" id="410">

<h2>410</h2>

Page of 86 275

<h3>Gone</h3>
<p>This resource is no longer available. Lets try a different
link.</p>

</article>
<article class="error" id="429">

<h2>429</h2>
<h3>Too Many Requests</h3>
<p>The website has too many visitors. Please try again in a few
minutes.</p>

</article>
<article class="error" id="500">

<h2>500</h2>
<h3>Internal Server Error</h3>
<p>We broke something. Sorry! Refresh, or try again later.</p>

</article>
<article class="error" id="501">

<h2>501</h2>
<h3>Not Implemented</h3>
<p>We’re missing something. Let us know to fix this bug.</p>

</article>
<article class="error" id="502">

<h2>502</h2>
<h3>Bad Gateway</h3>
<p>We got an error from a service we use. Please try again.</
p>

</article>
<article class="error" id="503">

<h2>503</h2>
<h3>Gateway Timeout</h3>
<p>A service we use didn’t respond to our request. Try again
later.</p>

</article>
<article class="error" id="504">

<h2>504</h2>
<h3>Internal Server Error</h3>
<p>We broke something. Sorry! Refresh, or try again later.</p>

Page of 87 275

</article>
<article class="error" id="508">
<h2>508</h2>
<h3>Loop Detected</h3>
<p>We redirected you incorrectly. Lets try a different link.</p>
</article>

Reference
You'll probably want to include the above errors, but
there are many other codes you could also support.
This site lists each HTTP status https://httpstatuses.com/

Page of 88 275

https://httpstatuses.com/

CSS Styles
Finally, we need to account for the CSS within the two style tags in the
head of the file. This is pretty simple as all you need to-do is hide the
content that is not required (errors not triggered) and show the error
that has been triggered, and the content to go along with that issue.

.error:not(:target) { height: 1px; left: -1000px; overflow: hidden;
position: absolute; top: -1px; width: 1px; }
.error:target { height: auto; left: auto; overflow: auto; position:
relative; top: auto; width: auto; z-index: 1; }

Regarding how this error loading method works, each article has
been assigned an ID that, upon being targeted using the CSS :target
pseudo, it will be made visible (whilst all non targets will be hidden
off-screen). Though it's important to note that it won't be hidden from
screen readers and accessibility aids as inclusive design is important.

Reference
An error page is an chance to have fun with the design,
if you need inspiration check out https://search.muz.li/
inspiration/404-page-not-found-design-inspiration/

Page of 89 275

https://search.muz.li/inspiration/404-page-not-found-design-inspiration/

Summary
With all of this in place, your all-in-one error page is ready to go. One
thing to remember is that if visitors accidentally browse to the error
page and no error hash is triggered, nothing will be shown (to avoid
confusing the user), You could choose to provide a default article and
have that hidden using a CSS sibling selector if you so wished. This
page can also be tricky for analytics apps, as all errors get sucked into
one location (though server logs should register the individual errors).

If you really need the analytics, you could go back to separate files,
but for maintainability and for keeping all possible errors self-
contained, I prefer this style of one-pot solution. A single error.html
file that can serve your visitors either a simple response to a glitch, or
if you put the work in, plenty of useful data to guide them through
your product dynamically. It's the best of (most) worlds.

Page of 90 275

Chapter 10:
Never miss a future calendar event
Craft downloadable event files that are supported by both desktop
and mobile calendar applications.

Page of 91 275

event.ics
Running an interactive website can be fun and time-consuming, but
one thing that can really keep visitors coming back for regular or
specific occasions are events. If your site holds timed events like sales,
new releases, or if you are planning live sessions (such as streaming
media), or want to offer reminders for things like podcasts; having a
reminder or a listing in the user's calendar is precisely what you need
to avoid lead losses online. This is entirely possible using one tiny file.

The event.ics file can be placed anywhere you like on a server, and
you can create as many of them as you require within a project, unlike
the previous tiny files we’ve detailed previously. It uses an unusual
plaintext syntax made up of properties and values which are only
similar to another file type we'll cover later in this book, the vCard.vcf
format (Chapter 32). Once downloaded, event files can be imported
into phone, desktop or email, calendar apps quickly and easily.

Page of 92 275

Regarding properties, as only a few are compatible with popular apps
(such as iOS, Mac, Google Calendar & Outlook), we will place most of
our focus on elements that have widespread implementation. For
other outstanding properties and values, they will be noted but may
not offer much value (if one is unsupported, it will be ignored). For
device specific-properties, they will be listed additionally.

Event Creation
To begin, every calendar event must have some opening and closing
tags, just like HTML. We will be placing our properties in the space
between them. The only thing of interest here is PRODID, which acts
like a title tag does. All you need to fill in is your company and event
(between the // slashes), and if you want to change the language, use
the two letter abbreviation to denote your locale of choice.

BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//Company//Event//EN
CALSCALE:GREGORIAN
BEGIN:VEVENT

END:VEVENT
END:VCALENDAR

Reference
For a comprehensive guide to using the iCalendar
syntax, check out the specification at https://
tools.ietf.org/html/rfc5545

Page of 93 275

https://tools.ietf.org/html/rfc5545

Event Naming
First and most importantly, we need to give the name of your event,
as this will be what the item is known as within the visitors' calendar
(and what will pop up when they receive notifications and reminders
if scheduled). This is a required element (as is the start and end date).
I'd also advise not making the name too long to avoid the title getting
partially cut off or truncated in certain calendar apps.

SUMMARY:Event

Time Stamps
Next, we need to provide the start and end date of the event. These
are important as it identifies if your event spans multiple days or if the
event lasts only a single day. If it spans a single day, have it start on
one day and end the next, as this indicates a midnight to midnight
scenario. It’s also worth noting that events are labelled in the format
YYYY-MM-DD / HH-MM-SS (as shown below). You can also add an
optional time stamp here of when the event.ics was created.

DTSTAMP:20210330T071500Z
DTSTART;VALUE=DATE:20211105
DTEND;VALUE=DATE:20211106

Frequency
An additional rule for the event is the frequency rule, as you might
wish your event to reoccur. Options include daily, weekly, monthly,
and yearly. You can tell the rule to occur a set number of times (the
second example), and a specific day in a month (the third example).

RRULE:FREQ=YEARLY
RRULE:FREQ=MONTHLY;COUNT=6
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=FR

Page of 94 275

Location
Another useful property that many calendar apps can take advantage
of is location and geo. Aside from using \n to indicate a new line it’s
pretty straightforward, though adding Apple Maps support requires
some geo co-ordinates which you should be able to get via Google
Maps if you want to add some useful integration for physical events.

LOCATION:Lewes\nEngland
GEO:50.873132,0.010429
X-APPLE-STRUCTURED-LOCATION;VALUE=URI;X-TITLE=Lewes\
\nEngland:geo:50.873132,0.010429

Description
Something optional but useful for people who check their calendars
regularly is the organizer and description. They are self-explanatory as
the organizer identifies who is responsible for the event and the
description is a great place to provide notes about what will occur.

ORGANIZER:Company
DESCRIPTION:Details

Website
Next, there is the optional URL which allows you to provide a link to
your event's website, which can be really useful to quickly let visitors
who booked an event or are awaiting something to happen to jump
straight from the notification they get in a calendar to your event's
website (or perhaps a promotion page related to the event).

URL;VALUE=URI:https://example.com

Page of 95 275

Alarm
Furthermore, there is an alarm or notification. If you have an event in a
user's calendar, they will likely want to be reminded about it. You can
set up a specific reminder of the event set to display on their screen
at a timed interval of either minus x minutes (-PT0M) or days (-PT0D).
This is naturally dependent on a user's device settings.

BEGIN:VALARM
TRIGGER:-PT60M
ACTION:DISPLAY
DESCRIPTION:Reminder
END:VALARM

Checksum
Lastly, we need to give this file a UID (unique ID). You could make up a
random string of capital letters and numbers if you wanted, or use a
password manager to do it for you; however, my method which
works well for me and ensures a random string every time is to use an
MD5 checksum for the event.ics file. Then add this into your final file.

UID:Code

If you don’t know how to make an MD5 checksum? On Mac, you can
open a terminal window at the file's location, type md5 filename.ics,
and it will create one. On Windows, open a command prompt and
type CertUtil -hashfile <path to file> MD5, and it will create one. And
on Linux, open a terminal prompt at the files location and just type
md5sum <filename>.ics to create the MD5 checksum you require.

Reference

To get an MD5 hash, see the following articles. https://
onthefencedevelopment.com/2017/08/15/windows-10-
builtin-md5-checksum-calculator/ (Windows), https://
www.mjdtech.net/how-to-check-md5-checksum-in-
os-x-terminal/ (Mac), https://www.geeksforgeeks.org/
md5sum-linux-command/ (Linux)

Page of 96 275

https://onthefencedevelopment.com/2017/08/15/windows-10-builtin-md5-checksum-calculator/
https://www.mjdtech.net/how-to-check-md5-checksum-in-os-x-terminal/
https://www.geeksforgeeks.org/md5sum-linux-command/

Summary
And that’s all there is to it. Hosting event files allows a visitor to click,
download, and import useful event information straight into their
desktop / email client or smartphone. It’s a quick and easy way to
assist visitors who have memory issues (so it’s great for accessibility)
and it helps timed events retain users who otherwise fail to return.

Reference
For more information about the iCalendar format and
additional syntax details, check out the Wikipedia
article at https://en.wikipedia.org/wiki/ICalendar

Page of 97 275

https://en.wikipedia.org/wiki/ICalendar

Chapter 11:
Make your project stand out with an icon
Generate the various images required for multi-platform support for
browsers, banners, and icons.

Page of 98 275

favicon.ico
Is there anything more underestimated than a favicon? A tiny image
that sits in the browser tab list, bookmarks menu or reading list that
helps visitors identify your website or app more easily among the
many windows or tabs they may have opened or have saved. It’s
great for enhancing the user-experience, but they can be difficult to
put together thanks to the ever-changing standards that define how
to create them over the years. We shall examine these more closely.

Before we cover the first format you’ll need to include, let’s discuss
the ones you no longer need to add to your website. For example,
you don’t need a 32×32 or 16×16 png file anymore as one of your
larger images or your SVG favicon will (down)scale well. You also
don’t need a Safari monochrome pinned SVG icon, as it’s deprecated.
Opera speed dial images aren’t very widely adopted either, so no
point having those. Now it’s time to get to the stuff you will need.

First up is the favicon.ico image, and it’s a bit of a controversial one, as
it’s a proprietary format created by Microsoft and was supported by
Internet Explorer (but also works in all other desktop browsers). Truth
be told, now IE is just about dead; better formats exist, and the only
way to create an ICO file is using a special icon editor. However,
favicon.ico has the unique quirk that browsers and search engines
might seek the file automatically, so it's worth having.

Reference
For additional information about Favicons, Wikipedia
has a general overview of the history and legacy of the
format at https://en.wikipedia.org/wiki/Favicon

Page of 99 275

https://en.wikipedia.org/wiki/Favicon

Previously, with ICO files you had to support up to 256×256 images
due to Window's deep integration with Internet Explorer, however,
with the browser nearly dead and the later versions very much
separated from the OS, when you create a favicon.ico file using an
icon editor, just include the 16×16 and 32×32 image formats to make
your icon more performant as it'll look good enough for most users.

If you need an editor to create favicon.ico files, there are plenty of
editors out there. On Windows, there's IcoFX Portable (it’s an old
version of their paid product, but it’s free and works very well on its
own), on Mac and Linux there’s no free alternative, but there’s the
web app RealFaviconGenerator though if you really want an app for
your workflow for Mac, Icon Slate or Image2icon both work well.

With this file, you should also include a reference in HTML files in the
head section.

<link rel="icon" href="/favicon.ico" sizes="32x32">

Page of 100 275

apple-touch-icon.png
Next we’re going to examine the apple-touch-icon.png file, which
was the second favicon file to be introduced to web browsers, and
the first to be built for smartphones. This one, rather than serving your
visitors in their tab bar and bookmarks, however, was built by Apple
for iOS devices for progressive web applications (and any websites)
that are added to the devices home-screen. It’s a very useful icon to
have for visitors wanting a more permanent shortcut to your site.

Reference

You can get the apps here: https://portableapps.com/
apps/graphics_pictures/icofx_portable (IconFX),
https://realfavicongenerator.net/ (RFG), https://
www.kodlian.com/apps/icon-slate (Icon Slate), and
https://img2icnsapp.com/ Image2Icon).

Page of 101 275

https://portableapps.com/apps/graphics_pictures/icofx_portable
https://realfavicongenerator.net/
https://www.kodlian.com/apps/icon-slate
https://img2icnsapp.com/

As with all the images in this chapter, you can build them using any
editor you prefer (there's an abundance of choice on all platforms).
Previously it was recommended to create various sizes of touch icons
to account for retina and non-retina devices; but as Apple has mostly
ended support for the older devices (as they are over 6 years old)
you should just make one 180×180 file and let it downscale.

Another interesting point about touch icons is that, alike favicons, it’s
worth using them because Apple devices have come to seek them
automatically, so make sure to include yours in the base directory.
Furthermore, make sure it’s called apple-touch-icon.png; otherwise
server logs might display errors (as with favicon.ico) in devices that
fail to find it. With this file, you should also include a reference in HTML
files in the head section, the code for this is shown on the next page.

<link rel="apple-touch-icon" sizes="180x180" href="apple-touch-
icon.png">

x512.png and x192.png
Just as iOS has a favicon built for progressive web applications, so
does Android (or more specifically Chrome) - actually two of them.
You’ll house them within a tiny file which we’ll encounter later in the
book called site.webmanifest (Chapter 27) and they will provide two
scaled sizes of icon to the device's home-screen; the device will pick
which best suits the situation and ignore the other image used.

Reference

For more details about the Apple Touch Image format,
read https://developer.apple.com/library/archive/
documentation/AppleApplications/Reference/
SafariWebContent/ConfiguringWebApplications/
ConfiguringWebApplications.html

Page of 102 275

https://developer.apple.com/library/archive/documentation/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html

While you can provide more than two images, there’s only two that
the Chrome team recommend, and as images are scaled as required,
we may as well stick with that. You’ll need to create both a 512×512
and 192×192 PNG image which can be located anywhere you prefer
(as it’ll be pointed too within the manifest file we create later on).

Reference
If you want to know more about the sizes you need to
offer to Chrome, visit https://web.dev/add-manifest/

Page of 103 275

https://web.dev/add-manifest/

small.png, medium.png, wide.png
and large.png
Just like with the ICO favicon that was built originally for Microsoft
Internet Explorer, this favicon is built for the same browser. If you have
any visitors that still use Internet Explorer version 8 to 11 then you will
definitely want to include this image as you’ll reference it within
another tiny file which we’ll encounter later on in the book (Chapter
27). However, if all your users are refined individuals using better,
more up-to-date browsers, you can safely ignore this image file.

Page of 104 275

If you choose to create the ms-tile.png file, you’ll need to make four
separate images to cover the various tile sizes that both Windows and
Internet Explorer supports. small.png should be 70×70, medium.png
should be 150×150, wide.png should be 310×150, and large.png should
be 310×310. You can put the image where you want on your server, as
it’ll be pointed to from within the BrowserConfig.xml file. As with all
the images in this chapter, make sure you optimize (compress) them
as best you can to improve the performance of the website or app.

icon.svg
Next is the newest in the bunch and the most unique as it uses a text-
based format (SVG). It’s easily the most performant of the favicons as
you can compress it easily using Apache's GZIP or Brotli and with
support in all modern web browsers, it’s the icon that visitors will
most likely see when browsing the web. It’s the natural successor to
the favicon.ico format, and you only need the one file size, as SVG has
the wonderful ability to scale itself without losing any image quality.

Your SVG favicon can be placed anywhere on your web server, and
among its special qualities are that you can use CSS (within the file) to
give it support for dark mode, and using embedded CSS or JavaScript
you can animate your SVG icon to provide little effects which could
enhance the UX such as alerts, counters, and more. You can see why
it’s the best of all worlds for icon design, but as with the Apple touch
favicon, you’ll need to add a link reference in your HTML head.

<link rel="icon" type="image/svg+xml" href="images/icon.svg">

Reference
For information about the tile sizes and splash screens,
visit this detailed guide https://docs.microsoft.com/en-
us/windows/uwp/design/style/app-icons-and-logos

Page of 105 275

https://docs.microsoft.com/en-us/windows/uwp/design/style/app-icons-and-logos

Reference
For a comprehensive guide to all the cool things you
can do with SVG icons, visit https://css-tricks.com/svg-
favicons-and-all-the-fun-things-we-can-do-with-them/

Page of 106 275

https://css-tricks.com/svg-favicons-and-all-the-fun-things-we-can-do-with-them/

apple-splash.png
Now we are officially done with the favicons, we can look at some of
the other images that may prove useful for your web apps and sites.
First up is the splash screen (startup-image) that iOS progressive web
applications can add to introduce your web app to your visitors. It’s a
nice touch to make your product feel a bit more native even though
it’s hosted online. Think of it as a mini loading dialog box for your app.

Page of 107 275

One of the main issues you’ll come across when implementing this
feature is the sheer number of images required to cover each iOS
device. This is because unlike favicons, splash screen images don’t
scale, and you’ll need one for each of the 31 supported devices and a
link reference to it in your head to go with it, plus you’ll also need
another 31 to support rotation as portrait and landscape look visually
different. This means 62 PNG files and link tags with media queries!

If you’re up for this massive task (for what amounts to a small, useful
branding exercise), I’ve included the five meta tags you include to
ensure your app triggers the iOS progressive web application status.
I’ve also included an example link tag with a media query that will
target a specific iOS device (based on width and height) and
orientation. Is the performance hit of including all the added code to
pick the image worth the benefit? You are the ultimate judge on that.

<meta name="mobile-web-app-capable" content="yes">
<meta name="apple-touch-fullscreen" content="yes">
<meta name="apple-mobile-web-app-title" content="Name">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style"
content="default">
<link rel="apple-touch-startup-image" media="screen and (device-
width: 320px) and (device-height: 568px) and (-webkit-device-
pixel-ratio: 2) and (orientation: landscape)" href="images/splash/
1136x640.png" >

Reference

To help you work out what image sizes you require for
a splash screen, use the Apple Interface Guidelines at
https://developer.apple.com/design/human-interface-
guidelines/ios/visual-design/adaptivity-and-layout/

Page of 108 275

https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/adaptivity-and-layout/

banner.png
Last, we have an image that acts a splash screen, but doesn’t require
nearly as much effort as the Apple iOS image; however, it could be
argued that it has a much wider reach and appeal. The banner.png is
an image that exists to serve the OpenGraph protocol, which in turn
will give visitors who share your site (and its pages) or app on social
networks an image which represents your brand alongside the URL.

A minimum of 1080 pixels wide, Facebook recommends that you
have an image of 1200×630; and as it will scale well on Twitter and
other social networks, it’s the resolution that I’d generally recommend
going with to ensure widespread compatibility. To integrate the
image into your site, you can place it anywhere on your server, but
you need to link to it with a meta link (and alt tag) in your HTML head.

<meta property="og:image" content="images/banner.png">
<meta property="og:image:alt" content="Logo">

Reference

If you would like a quick start workflow to help you
generate favicons, this article may be of use https://
evilmartians.com/chronicles/how-to-favicon-in-2021-
six-files-that-fit-most-needs

Page of 109 275

https://evilmartians.com/chronicles/how-to-favicon-in-2021-six-files-that-fit-most-needs

Chapter 12:
Offer syndicated content for non-browsers
Generate an RSS, Atom or JSON feed that's compatible with
syndication readers or podcast clients like iTunes.

Page of 110 275

rss.xml
Welcome to the wonderful world of feed syndication. In a world of
data hungry websites, advert infested blogs, magazines that spread
your attention all over, clickbait news sites, and with social networks
spiraling down the evil wormhole; the neutral force of this age-old
medium has made it increasingly popular. Get the latest stories you’re
interested in without algorithms getting in the way. Offering this
technology to your visitors should be high on your ethical agenda.

Syndication feeds provide the content and only the content. You
won't find all the bandwidth hungry stuff that normally clutters up the
average website. New content is pushed to you as separate articles
you can read at your convenience (like emails in a client). You can
even get notifications within feed readers for your favorite websites.

Page of 111 275

Creating a feed is pretty simple as all feeds (bar one) use the XML
language, and it’s down to personal preference as to which flavor you
use to generate your code. We’re going to start with RSS (Really
Simple Syndication) which remains the most popular. You’ll need to
ensure that your code conforms to the XML specification (which is
very strict) in order for feeds to work correctly, so code carefully).

RSS Creation
So let’s get building our rss.xml file. First, we’ll need an XML doctype
with RSS and a channel opening and closing tags to encase our
content feed. The below is a sample of the code you can use:

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">

<channel>

</channel>
</rss>

Next we’ll start placing some website information in the channel tags,
beginning with the required title, link, and description elements. I’ve
included a table below the code to show all the potential elements
you can include to describe your website or app in the channel
element. I’ve also added an extra element used in the atom
specification which is optional, but I find useful as it acts as a self-
referential link for the feed (you'll see it in the code example).

<title>Title</title>
<link>https://example.com/</link>
<description>Description.</description>
<language>en-us</language>
<pubDate>Sun, 19 May 2021 15:21:36 GMT</pubDate>
<copyright>© Copyright Company 2021</copyright>
<atom:link rel="self" href="https://example.com/rss.xml"
type="application/rss+xml" />

Page of 112 275

Property Required Description

category No One or more categories.

<cloud
domain="url.com"
port="80" path="RPC2"
registerProcedure="ping
Me" protocol="soap"/>

No
Notify cloud service of
updates to the channel or
website.

copyright No Channel copyright notice.

description Yes A description of your channel.

docs No Docs about the format this is.

generator No App used to create this feed.

image No
Contains url tag to image, title
tag, and link tag to website.

language No Locale the feed is written in.

lastBuildDate No When the feed was updated.

link Yes The URL to your website.

managingEditor No Email of the feed editor.

pubDate No Date and time of publication.

skipDays No
Which days can be skipped.
Add day tag with day within.

skipHours No
What hours can be skipped.
Add hour tag with 0-23 within.

textInput No
Must contain title, description,
name, and link elements.

title Yes The name of your channel.

Page of 113 275

Content
Next we need to add some news or content to our feed, and no
surprise, it uses a pair of item properties within your channel tags.
You’ll need to add the item tags with some sub-properties for each
news story (or item) you want to add. I’ve provided another table
showing the elements you can use within item tags, and below that
an example of a template you can use containing some tags.

ttl No Cache time before refresh.

webMaster No Email for technical support.

Property Required Description

Reference
For a comprehensive guide to RSS, the specification is
available at https://www.rssboard.org/rss-specification

Page of 114 275

https://www.rssboard.org/rss-specification

<item>
<title>Title</title>
<author>Author</author>
<pubDate>Sun, 19 May 2021 15:21:36 GMT</pubDate>
<guid>https://example.com/article.html</guid>
<link>https://example.com/article.html</link>
<enclosure url="https://example.com/episode1.mp3"
length="1069871" type="audio/mpeg"/>
<description>Description.</description>

</item>

Integration
Finally, you’ll need to add a link to your completed RSS feed in the
head of your HTML documents so that syndication clients, feed
readers, and podcast clients can identify and use this useful format.

<link rel="alternate" type="application/rss+xml" href="feed.xml">

Property Required Description

author No Email of the item's author.

category No One or more categories.

comments No URL to a comments page.

description Yes A description of your channel.

enclosure No Link to a podcast or videocast.

guid No A unique identifier string.

link Yes The URL to your website.

pubDate No Date and time of publication.

source No Channel the item came from.

title Yes The name of your channel.

Page of 115 275

itunes.xml
Next up we’re going to look at a subset of the RSS format which is
built for the iTunes client - which is particularly popular with Mac and
iOS users for podcast listening and well worth considering. Because
it’s a subset of RSS, I won’t go as in-depth as we’ve covered the RSS
language in detail above. What I will cover are the various differences
and the extensions that iTunes provides that are worth looking at as
they improve the experience for Apple podcast subscribers.

Feed Creation
To begin with, let's add the usual XML declaration, RSS element and
channel tags. One thing to note is that the iTunes.xml file contains two
more attributes in the RSS element. One for RSS modules and one for
the iTunes extensions. It doesn’t affect you, it’s just worth mentioning.

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom"
xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd"
xmlns:content="http://purl.org/rss/1.0/modules/content/">

<channel>

</channel>
</rss>

Reference

iTunes uses an extension of the RSS language. For a list
of the elements it supports check Apples specification
at https://help.apple.com/itc/podcasts_connect/#/
itcb54353390 and its element requirements at https://
podcasters.apple.com/support/podcast-requirements

Page of 116 275

https://help.apple.com/itc/podcasts_connect/#/itcb54353390
https://podcasters.apple.com/support/podcast-requirements

Next we’re going to add the usual website information in the header.
This is where things get interesting because iTunes adds some extra
tags that you can (and should) include to improve how your feed
appears in the iTunes store for podcast users who use Apple devices
on Mac or iOS. I’ve included an example, plus a table of supported
elements in iTunes feeds. Some are from the RSS specification.

<title>Title</title>
<link>https://example.com/</link>
<description>Description.</description>
<language>en-us</language>
<pubDate>Wed, 17 Mar 2021 19:30:00 GMT</pubDate>
<copyright>© Copyright Company 2021</copyright>
<itunes:author>Author</itunes:author>
<itunes:explicit>false</itunes:explicit>
<itunes:image href="https://example.com/artwork.png"/>
<itunes:owner>

<itunes:name>Owner</itunes:name>
<itunes:email>email@example.com</itunes:email>

</itunes:owner>
<itunes:block>no</itunes:block>
<itunes:category text="Category"/>

Page of 117 275

Property Required Description

copyright No Channel copyright notice.

description Yes A description of your channel.

itunes:author No Who created the show.

itunes:block No Yes, to hide the podcast.

itunes:category Yes Which group does the show fit.

itunes:complete No Yes, value for no more updates.

itunes:email No Email the channel owner.

itunes:explicit Yes True or False (Adult content).

itunes:image Yes The artwork for your show.

itunes:name No Who owns the channel.

<itunes:new-feed-
url>https://
example.com/
example.rss</
itunes:new-feed-url>

No Change the feed URL.

itunes:title No Concise iTunes podcast title.

itunes:type No Episodic or Serial (numbered).

language Yes Language the feed is written in.

link No The URL to your website.

pubDate No Date and time of publication.

title Yes The name of your channel.

Page of 118 275

Content
Next we’re going to add an episode to our podcast feed, as with an
RSS feed, we need an item link for every episode in the season (or
series), and there are a few elements we can enclose within it. Below
I’ve provided an example of some code you could use, plus I’ve
provided a table of the elements iTunes accepts in podcasts.

<item>
<title>Title</title>
<pubDate>Wed, 17 Mar 2021 19:30:00 GMT</pubDate>
<guid>https://example.com/article.html</guid>
<link>https://example.com/article.html</link>
<description>Description.</description>
<enclosure url="https://example.com/episode1.mp3"
length="13475901" type="audio/mp3"/>
<itunes:title>Title</itunes:title>
<itunes:episode>1</itunes:episode>
<itunes:author>Author</itunes:author>
<itunes:explicit>false</itunes:explicit>
<itunes:duration>1671</itunes:duration>
<itunes:image href="https://example.com/artwork.png"/>

</item>

Page of 119 275

Integration
And no RSS feed could be complete without the link in the head of
your HTML files, which allows iTunes to find a podcast based on the
URL you paste into your client. Below is the source code you require.

<link rel="alternate" type="application/rss+xml" href="feed.xml">

Property Required Description

description No A description of your channel.

enclosure Yes Link to a podcast or videocast.

guid No A unique identifier string.

itunes:block No Yes, to hide the episode.

itunes:duration No The audio duration in seconds.

itunes:episode No Podcast episode number.

itunes:episodeType No Full, Trailer, or Bonus media.

itunes:explicit No True or False (Adult content).

itunes:image No 1400×1400 PNG or JPG image.

itunes:season No Podcast season number.

itunes:title No Concise iTunes podcast title.

link No The URL to your website.

pubDate No Date and time of publication.

title Yes The name of your channel.

Page of 120 275

atom.xml
Created as an alternative to the popular RSS format, this competing
way of syndicating content never really gained the same level of
popularity. But as it’s still in use on the web, and some people may
prefer to use it over the RSS format, I’m going to cover it here.

Reference

For a comprehensive guide to Atom, I recommend
checking out the syntax specification at http://
www.atomenabled.org/developers/syndication/ and
https://tools.ietf.org/html/rfc4287

Page of 121 275

http://www.atomenabled.org/developers/syndication/
https://tools.ietf.org/html/rfc4287

To create an atom.xml document as with the RSS format, you begin
by building an XML file (that can be stored anywhere you choose),
and you add an XML doctype reference with a pair of feed tags
which will contain our content. A code sample is shown below.

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

</feed>

Between the feed tags, you add some information about the site or
podcast you want to syndicate. Below are a list of the tags that Atom
supports (many are the same or variations of RSS) in a table. You’ll also
see a code example that you can adapt as you want for your file.

<title>Title</title>
<id>https://example.com/</id>
<subtitle>Description.</subtitle>
<updated>2021-06-13T18:30:02Z</updated>
<rights>© Copyright Company 2021</rights>
<link rel="self" href="https://example.com/atom.xml"
type="application/atom+xml" />

Page of 122 275

Property Required Description

author No
Contains sub elements: name,
email & URI of the feed author.

category No One or more categories.

contributor No One or more name elements.

<generator
uri="blog.php"
version="1.0">Example
Toolkit</generator>

No App used to build the feed.

icon No Square image of the feed.

id Yes The URL to your website.

logo No The artwork for your feed.

rights No Channel copyright notice.

subtitle No Description of the channel.

title Yes The name of your channel.

updated Yes When the feed was updated.

Page of 123 275

Content
Next we need to add some content to the feed in the form of entry
tags, as per RSS it’s one entry tag per item. You can add numerous
elements within this tag as well, below is a boilerplate plus a table of
tags for you. You'll need to include an id, title and updated element.

<entry>
<title>Title</title>
<author>

<name>Name<name>
<email>email@example.com</email>

</author>
<updated>2021-06-13T18:30:02Z</updated>
<id>https://example.com/article.html</id>
<link rel="alternate" href="https://example.com/article.html" />
<content type="xhtml" xml:lang="en"><div xmlns="http://
www.w3.org/1999/xhtml"><p>Description.</p></div></
content>

</entry>

Page of 124 275

Integration
Finally, we need to add a link into the head of our HTML document to
finish, as is required of any syndication format to let it be recognized.

<link rel="alternate" type="application/atom+xml" href="feed.xml">

Property Required Description

author No
Contains sub elements: name,
email & URI of the feed author.

category No One or more categories.

content No See the above HTML example.

contributor No 1400×1400 PNG or JPG image.

id Yes The URL to your website.

link No A related link to the channel.

published No Date and time of publication.

rights No Channel copyright notice.

source No
Contains elements id, title,
updated and rights tags.

summary No Summary of the content.

title Yes The name of your channel.

updated Yes When the feed was updated.

Page of 125 275

feed.json
This is the last of the syndication formats you may come across, and
as it’s the newest one. It’s the one with the most compatibility issues,
as most feed readers focus their support on XML rather than this
format, which is the cleaner and easier to maintain JSON format. It is
gaining adoption rapidly, so it’s one to keep your eye on, and maybe
offer as an alternative. With this in mind, lets build a feed.json file.

JSON Creation
Unlike XML files, no declarations are required, JSON just uses opening
and closing brackets. Within these, you’ll want to include some basic
information about your feed, I’ve included a code sample below
(leaving a space for the items). As usual, I’ve included a table for the
properties supported. And there are some required elements.

{
"version": "https://jsonfeed.org/version/1.1",
"title": "Title",
"home_page_url": "https://example.com/",
"feed_url": "https://example.com/feed.json",
"items": [

]
}

Reference
Creating a JSON file may be straight forward, but if you
have any questions not covered in this book, check the
specification at https://jsonfeed.org/version/1.1

Page of 126 275

https://jsonfeed.org/version/1.1

Property Required Description

authors No
Contains name, url and avatar.
Array syntax shown like items.

description No A description of your channel.

expired No Yes, or No if feed is finished.

favicon No Min, 64×64 square image.

feed_url Yes The URL of this JSON feed.

home_page_url Yes The URL to your website.

hubs No
Contains type and URL array to
subscribe for notifications.

icon No 512×512 image of your channel.

link No A related link to the channel.

next_url No The next feed in sequence.

rights No Channel copyright notice.

title Yes The name of your channel.

user_comment No The purpose of the feed.

version Yes URL of the JSON specification.

Page of 127 275

Content
As you may notice, the JSON feed supports fewer properties, which
may or may not be a positive for your productivity. Either way, it's time
to add some items, remembering that each one will be enclosed
within open and close brackets, and I’ve provided a boilerplate with a
few example tags. Below that is a table of required and optional tags.

{
"title": "Title",
"id": "1",
"url": "https://example.com/article",
"content_html": "<p>Description.</p>"

}

Page of 128 275

Property Required Description

attachments No
Array containing URL, title, and
mime_type. Used for podcasts.

authors No
Contains name, url and avatar.
Array syntax shown like items.

content_html Yes If not text, use this for content.

content_text Yes If not html, use this for content.

date_modified No When the item was modified.

date_published No When the item was published.

external_url No Additional URL for the item.

id Yes Unique identifier for the item.

image No Image to accompany the item.

language No The language of the content.

summary No Brief description of the content.

tags No Array of tags describing data.

title No The name of your item.

url Yes URL for the article or podcast.

Page of 129 275

Integration
Finally, to end this lengthy chapter, you need to add a reference to
the head of your HTML element in order for feed readers to identify it.

<link rel="alternate" type="application/feed+json" href="feed.json">

Just as a final rounding off, whichever format you choose (whether
RSS, iTunes, Atom, or JSON), run your code through a feed validator to
ensure that your syntax is well-formed. This is because XML is prone
to breaking easily if a single mistake is made. Additionally, be sure to
try your feed in more than one feed reader (desktop, mobile, iTunes,
and web) to check it looks (visually) and behaves as expected.
Compatibility testing doesn’t just stop at your HTML, CSS, and JS.

Reference
The W3C has a feed validator that will work on any
XML document at https://validator.w3.org/feed/

Page of 130 275

https://validator.w3.org/feed/

Chapter 13:
If you're friendly, network with other sites
If you're a member of the FOAF scheme, use this tool to build a profile
of your identity for SEO purposes.

Page of 131 275

foaf.rdf
Described using a more complex version of the XML specification (the
RDF schema), it’s no wonder that this tiny file didn’t gain the levels of
adoption that could have matched it’s potential. It’s a shame as in this
age of social networking and the semantic web (where all we post
has a meaning), is this way of telling users who you are so, they can in
turn link to you using a webring, literally as a friend-of-a-friend.

While the specification hasn’t seen much action recently, it hasn’t been
superseded by anything better. As the semantic web is still important
for SEO and for accessibility and for social visibility, it’s still worth
adding this micro-file to your website. The great thing is it doesn’t
really take much effort, you just need to wrap your head around the
different style of syntax, which we shall describe below.

Page of 132 275

Networking
First, you’ll need to create your foaf.rdf file and put it somewhere on
your server. Within this file, you’ll have to include the below replacing
the word Here with a value of Agent, Person, Organization, Group or
Project, depending on whether your site is for you, your business or
your application. You’ll also want to replace #Name with the name of
your website or app (remembering to include the # character).

<foaf:Here rdf:about="#Name" xmlns:foaf="http://xmlns.com/foaf/
0.1/">

</foaf:Here>

Next, you’ll want to include the friend-of-a-friend property and value
pairs. There are a number of them, so I’ve included a table of the
various ones you can use below. Note that I’ve removed a few from
the specification that are deprecated due to the services they work
with no longer being available. You should include enough properties
to sum up you or your business's connection to the website, don’t
include every tag in this file. Furthermore, remember to precede each
tag with a foaf: reference in the tag, for examples, see the boilerplate.

Reference
For a more comprehensive guide to Friend of a Friend,
check the specification at http://xmlns.com/foaf/spec/

Property Description

account A service run by you or your business.

accountName The name associated with the service.

accountServiceHomepage The URL associated with the service.

age The age of you or your business / app.

based_near The location you are based closest too.

Page of 133 275

http://xmlns.com/foaf/spec/

currentProject What you're working on (See made).

depiction Relationship between you and an item.

familyName Your surname (or use name instead).

givenName Your first name (or use name instead).

homepage You or your businesses' homepage.

img An image that represents the profile.

interest A webpage about your hobbies.

jabberID A Jabber ID for messenger users.

knows Someone known to your business.

logo The logo for you or your business.

made Project made by you or your business.

mbox The email address used for contact.

mbox_sha1sum SHA1 checksum for contact email.

member A group that you are a member of.

name Your name or your product's name.

nick A nickname or handle you use.

openid The openID address for authentication.

pastProject A project you worked on (See made).

primaryTopic The main category or topic (See topic).

publications Link to a list of publications by you.

schoolHomepage URL to the school you have attended.

Property Description

Page of 134 275

Next, you’ll want to include a link to the file in the head of your HTML
file so that social media and search engines that support the semantic
web and the friend-of-a-friend scheme can pick up and utilize the file.

<link rel="author" type="application/rdf+xml" href="foaf.rdf">

sha1 A SHA1 checksum for a purpose.

thumbnail A profile thumbnail image (See img).

tipjar How to donate or pay on your site.

title Mr, Mrs, Miss, Ms, Dr, Prof, Etc.

topic The category or topic of this website.

topic_interest Main category of interest (See topic).

weblog Link to the blog for your website.

workInfoHomepage Link to your portfolio (See homepage).

workplaceHomepage A link to your businesses' website.

Property Description

Page of 135 275

Boilerplate
Finally, I’ve included an example of a complete foaf.rdf document
below, which you could adapt if you wanted to help you in your
projects. URL's and image references have no closing tag, but have an
rdf:resource attribute. Much alike the dublin.rdf file we discussed in an
earlier chapter, it’s a great tool to promote your connection to your
work. While social networks and search engines will be the main
method of pushing your brand, this tiny file might be a low-impact
method of helping users connect to you through your digital work.

<foaf:Organization rdf:about="#name" xmlns:foaf="http://
xmlns.com/foaf/0.1/">
<foaf:name>Name</foaf:name>
<foaf:homepage rdf:resource="https://example.com/">
<foaf:img rdf:resource="apple-touch-icon.png">
</foaf:Organization>

Page of 136 275

Chapter 14:
Show your physical location for retail stores
If you rely on RDF metadata, create an indexable link to your location,
with full Google Earth KML integration.

Page of 137 275

geo.rdf
Existing on the web is central to our everyday lives, yet people often
still underestimate the value that having a physical location can bring.
It gives you a greater sense of authenticity, having roots in the real
world, it offers another means of individuals getting in touch, and it
provides location awareness when people reach out for technical
support. Knowing your timezone means they may not bother you if
they know you’re asleep is a prime benefit of location awareness.

As this information is useful to offer for both individuals and
businesses, let's next introduce you to the tiny but useful geo.rdf file.
It’s not too well known as like dublin.rdf and foaf.rdf it uses the RDF
schema which is very strict (using XML) and more complex than
formats like JSON and thus less popular. As Geo uses a hybrid of both
DCMI and FOAF to provide its markup, it’s become deprecated in
favor of Microdata (Schema) which can be embedded in a page.

Page of 138 275

RDF Creation
With all of this being said, Google can take advantage of RDF files and
the data is still useful, especially as using RDF, you can avoid lots of
repetitive markup cluttering your HTML (making maintenance easier if
the location data should be on all your pages). To take advantage of
this file, create a geo.rdf file somewhere on your server and include
an XML doctype, RDF tags, and a rdf:Description element which
should contain an rdf:about attribute with your base URL as the value.

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:geo="http://
www.w3.org/2003/01/geo/wgs84_pos#" xmlns:rdf="http://
www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="https://example.com">

</rdf:Description>
</rdf:RDF>

Between the rdf:Description elements, we need to put a couple of
tags which describe where the website is located. You’ll want to
describe the region in which your office or physical address is, and a
description of how you would label your premises for people who
choose to visit. With these, I often reflect my HTML head values.

<dc:title>Location</dc:title>
<dc:description>Description</dc:description>

Reference

If you need a reminder of either specifications that Geo
uses, you can do so at https://www.dublincore.org/
specifications/dublin-core/dcmi-terms/ (DCMI) and
http://xmlns.com/foaf/spec/ (FOAF)

Page of 139 275

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
http://xmlns.com/foaf/spec/

Location Data
Next we should include your location. These are the latitude and
longitude co-ordinates that are used by tools like Google Maps to
identify where you are physically located when they pick up this file.

<foaf:topic rdf:parseType="Resource">
<geo:lat>00.000000</geo:lat>
<geo:long>-0.00000</geo:long>

</foaf:topic>

Finally, we need to include a reference to your file in the head of your
HTML document so that search engines can make use of the RDF file.

<link rel="author" type="application/rdf+xml" href="geo.rdf">

geo.kml
This isn’t the end of our physical location journey because another
format exists which can provide (with the same co-ordinates) a more
augmented reality experience. If you’ve ever used the Google Earth
application, you’ll know it’s a pretty amazing tool, as it allows you to
use a range of satellite photography to zoom down onto a location
with some accuracy. Well, we can add support for this directly within
our website to help visitors find your premises literally on the planet.

Google Earth supports a custom subset of the XML language called
KML (Keyhole Markup Language). While there’s a fair amount to the
specification, for this tutorial I’m just going to give you enough to
build a file that Google can use to allow your users to both import
and Zoom straight to your physical location. It might not be the most
practical tool, but it’s a fun bonus feature for your site or app.

Reference
To find your geodata co-ordinates, use the tag creator
at https://www.geo-tag.de/generator/en.html

Page of 140 275

https://www.geo-tag.de/generator/en.html

Reference
For a more comprehensive guide to the KML language,
read this introduction which links to a syntax reference
https://developers.google.com/kml/documentation/

Page of 141 275

https://developers.google.com/kml/documentation/

KML Creation
To begin, create a geo.kml file and place it alongside your geo.rdf file
(after all, you may as well support both if you’re going to handle the
Semantic Web). Within the KML file you’ll want an XML declaration
alongside opening and closing elements for KML and Document.

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">

<Document>

</Document>
</kml>

Within the Document element (note this is case-sensitive) you’ll want
to include some elements to describe the location (as we did in the
geo.rdf file). One named region, and a description of the location.

<name>Location</name>
<description>Description</description>

Location Data
Next we need to-do a couple of things. First, we require an element
to stick a pin in your location so when Google Earth zooms in, the
visitor can find it easily. Secondly, we need to add the co-ordinates.
Note that KML requires them to be entered in two places, the LookAt
element and via the Point element, for Google Earth to successfully
navigate to the location. The other values you can safely ignore.

Page of 142 275

<Style id="pin"><IconStyle><Icon><href>http://maps.google.com/
mapfiles/kml/pushpin/ylw-pushpin.png</href></Icon></
IconStyle></Style>
<Placemark>

<LookAt>
<longitude>-0.00000</longitude>
<latitude>00.000000</latitude>
<altitude>0</altitude>
<tilt>0</tilt>
<range>5500</range>

</LookAt>
<styleUrl>#pin</styleUrl>
<Point><coordinates>-0.00000,00.000000,0</coordinates></
Point>

</Placemark>

Integration
Finally, now that our file has been put together you can try it out in the
Google Earth app to make sure it works, and if it does, you can put
the below line of HTML in the head of your pages to let it be used.
You might also want to offer a direct download link to the file as it’s a
non-standard format that is only utilized by the Google Earth app.

<link rel="author" type="application/vnd.google-earth.kml+xml"
href="geo.kml">

Reference
You can try your KML file in the Google Earth app by
downloading it at https://www.google.com/earth/

Page of 143 275

https://www.google.com/earth/

Chapter 15:
Credit those who made the project possible
Give credit where it's due with the self-contained, non-impactful
accreditation text file format.

Page of 144 275

humans.txt
Every website or app deserves credit, and often multiple people are
involved in the creative process. From the developers and designers
who work behind the scenes to the images and typefaces you buy
that require attribution. One of the biggest questions involved in
attribution is how do you give fair credit to people or businesses on
the web without it becoming overly spammy or cluttering up critical
pages of your content? This is where the humans.txt file appears.

Using a similar form of syntax to the robots.txt file (which we’ll cover
later in the book in Chapter 25), humans.txt is a plaintext method of
providing thanks, credit, and your technology stack details in a
centralized, human-readable format without having numerous anchor
links seeping SEO karma where you don’t want it too. By having all of
your credits within this file, you can ensure that you offer a technical
peek under the hood of your site, but in a very low-impact manner.

Page of 145 275

Overview
Sounds good? It’s well-supported as many sites adopt this standard,
and it allows you to give credits to images, libraries and such in one
place without scattering credit links all over your sites. To start, you’ll
want to create a humans.txt file and put it in the base directory of
your website (as this is where it's assumed it’ll be by visitors). Within
the file, you will want to include some sections (using comments).

/* ----------------------- */
/* Product Website Credits */
/* ----------------------- */

/* TEAM */

/* THANKS */

/* SITE */

Team
You can include custom sections and properties as humans.txt doesn’t
have a strict set of standards, but the collection I’ve built up has been
adopted by a variety of sites, so they are probably considered to be
best practices. With this in mind, you should replace "Product" with
the name of your site or app, and in the TEAM section, you’ll want to
include the following properties for each individual working on the
website. They are all optional, but recommended, and you could
choose to create additional custom property / value pairs.

Title: Name
Position: Job Title
Site: https://example.com
Twitter: @TwitterID
Location: Region, Country
Contact: email@example.com

Page of 146 275

Thanks
Next, you’ll want to fill in the THANKS section by providing credit to
those who helped in the creation of your website or app. Whether
this was for images or typefaces you used, or just the people who
tested your product, they all deserve to be given a mention. Feel free
to include as many individuals (or groups) as you feel is necessary.

Title: Name
Twitter: @TwitterID
Site: https://example.com
License: https://example.com/license.txt

/* You for visiting this website! */

Website
Finally, we need to fill in the SITE section, which contains an array of
useful under-the-hood website details for anyone who’s interested.
Why should you include this? It’s useful for other web developers;
plus if a visitor encounters an issue, they might be able to use the
information you offer to identify the cause of the error and provide a
solution when they contact you for support (say, if a rogue script is at
work). I’ve provided a list of the properties that you can include.

Language: English (US)
Standards: TXT, HTML, CSS, JS
Components: None
Software: None
Services: Font (Typeface), Name (Icons), Hosting, Domains
Testing: Chrome (Mac/PC), Firefox (Mac/PC), Safari (Mac/iOS), IE
(11+)
Updated: 2021/06/12 10:12

Page of 147 275

If you support multiple languages, list them. If you utilize more than
the included language standards (say SVG), add them. If you use
Components (code libraries like jQuery, Vue, or Angular), list them. If
you built the site using apps (Word processors, image editors, IDEs,
and such), include them. Also provide information on any typefaces,
icon packs, hosting, and domains you use. Next, include the date the
file was last updated. And any devices you test the site upon.

Integration
Finally, you’ll need to include a link to the file in the head of your
HTML file. It’s not so much for visitors as they’ll automatically look at
the root of your site, but it’s for any search tools that index human.txt
files.

<link rel="author" type="text/plain" href="humans.txt">

Reference
For a comprehensive guide to the humans.txt file, you
can read the specification at http://humanstxt.org/

Page of 148 275

http://humanstxt.org/

Chapter 16:
Get a solid backbone for your web design
Every project needs a starting point, this is mine. Generate an HTML5
boilerplate that'll get your site started.

Page of 149 275

index.html
When beginning a web project, you’ll usually start with an HTML file.
As every project is different and will have different requirements, it’s
often difficult to determine exactly what each project will require as a
starting point to be most productive. Some people like to work from
scratch in a blank IDE coding their HTML manually, while others like to
work with a large complete set of pre-built boilerplates such as the
open source Bootstrap or the H5BP (though the choice is endless).

Reference

If you do want to use a pre-existing boilerplate, your
best options to use are http://www.initializr.com/
(Initializr), https://html5boilerplate.com/ (H5BP), or
https://getbootstrap.com/ (Bootstrap).

Page of 150 275

http://www.initializr.com/
https://html5boilerplate.com/
https://getbootstrap.com/

The problem with using any method aside from starting from scratch,
however, is they typically add a lot of unnecessary bulk and may not
be up-to-date. While in an earlier chapter we covered all the potential
elements you could add in the head of your HTML (and there’s quite a
few), this chapter is focused on building a lean starter document with
the minimal required markup (plus a few of the latest best practice
recommendations for HTML) so you can customize it as you require.

Reference

HTML5 is a straight forward but changing language. If
you want to learn more about it check the specification
at https://html.spec.whatwg.org/multipage/ or browse
https://developer.mozilla.org/en-US/docs/Web/HTML

Page of 151 275

https://html.spec.whatwg.org/multipage/
https://developer.mozilla.org/en-US/docs/Web/HTML

Base Code
So let’s begin by creating an index.html file in your base directory.
You’ll need several things within it, including the HTML5 doctype, an
HTML5 element (with a lang attribute indicating the locale you’ll be
using for the document), plus a head and body tag for the "thinking
code" and "content code" of your document. Next is an example.

<!DOCTYPE html>
<html lang="en">

<head>

</head>
<body>

</body>
</html>

Head Code
Within the head element, we need to put some important tags. We
need to declare character encoding using the charset meta tag. We
require a viewport meta tag to set and allow responsive scaling on
mobile devices. You’ll also have to add a title for your document and
a description (up to 156 characters) of your app or site. Finally, you’ll
want to add links to your external CSS and JavaScript files (for when
you create them later on). They should appear in this priority order.

<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-
scale=1">
<title>Title - Subtitle</title>
<meta name="description" content="Description.">
<link rel="stylesheet" href="assets/styles.css">
<script async src="assets/script.js"></script>

Page of 152 275

You can include many other tags, including meta and link elements,
which we covered in the first chapter. If you need a reminder, take a
look as you might want to add social media, asset links, progressive
web application features, etc (depending on your projects needs).

Body Code
Within the body elements, we’re going to split the content into three
defined sections using HTML elements called header, main, and
footer. In the header, you’ll put your logo and navigation. I’ve included
an example of what could be used within a portfolio website.

<header>
<h1>Logo</h1>
<nav>

Articles
Work
Info

</nav>

</header>

Next on the list is the main body of content, hence the main element.
You’ll want to split your article or app into clearly defined regions via
the article element, which will help (for accessibility and legibility).
Think of them like chapters in a book or screens on your app which
you can hide or display as required, and you’ll understand their
hierarchy purpose. You can only have one main element, but you
should provide as many article elements as you require for regions.

Page of 153 275

<main>
<article>

<h2>Section</h2>
<p>Content</p>

</article>
<article>

<h2>Section</h2>
<p>Content</p>

</article>
</main>

Finally, we have the footer, which is where you store useful links that
aren’t suitable for the navigation and, more importantly, copyright
information on your site. An example you can use is shown below.

<footer>
<p>Copyright, 2021</p>
<p>Built by Your Name.</p>

</footer>

Summary
And that’s just about it. I would rather not place anything else in the
file, as it would assume too much of your project. If you’re building an
app or one-page website, you won’t want bundles of links, so you
can alter the navigation links as required. If you use a JavaScript
tooling system that generates HTML on-the-fly then your output may
vary in terms of quality; that being said, semantic, clean HTML is still
just as important as ever before, with accessibility being critical to UX.

Reference
Don't forget to validate your code. Errors in your HTML
syntax can cause accessibility issues so it's critical that
your code is well formed. https://validator.w3.org/

Page of 154 275

https://validator.w3.org/

Chapter 17:
Have all your documents in order for visitors
Build license, terms of service, impressum, accessibility statements,
and privacy policy docs for your site.

Page of 155 275

license.txt
When creating projects, or using existing works created by others,
you’ll want to license your product to ensure that it’s only used in the
manner you wish. Back in the old days of app and site development,
you’d have to create your own license agreement and the legality of
these files was largely untested. These days, boilerplate agreements,
written by legal experts, exist to cover uses you’re likely to need.

Occasionally, you’ll need to use a specific agreement if you are
dependent on a particular licensed system (WordPress, for example,
requires GPLv3). Other times you might use multiple licenses as your
work will utilize code from various licensed libraries. Before we pick
which license you’ll use, you will want to create a license.txt file and
link to it within your HTML (using the rel="license" attribute).

So which license should you pick? There’s far too many to choose
between (without it getting confusing), however a few stand out as
community favorites: Apache, GPL v3, MIT and CC. Plus, there’s also
Blue Oak and Hippocratic license that rightly deserve some attention.
I’ve provided a table below of the licenses, what they cover, what
they don’t and, you can decide for yourself if it’s the one for you.

Page of 156 275

Reference
The below table is based upon the choose a license
project. If you are having trouble picking one for your
work, check out https://choosealicense.com/

Name Permissions Conditions Limitations

Apache 2.0

Commercial Use

Distribution

Modification

Patent Use

Private Use

Include License

Include Copyright

List All Changes

Limited Liability

Trademark Use

No Warranty

License: https://www.apache.org/licenses/LICENSE-2.0

GNU GPL v3

Commercial Use

Distribution

Modification

Patent Use

Private Use

Include License

Include Copyright

List All Changes

Disclose Source

Same License For
All Modifications

Limited Liability

No Warranty

License: https://www.gnu.org/licenses/gpl-3.0.en.html

MIT

Commercial Use

Distribution

Modification

Private Use

Include License

Include Copyright

Limited Liability

No Warranty

License: https://opensource.org/licenses/MIT

Page of 157 275

https://choosealicense.com/

Creative
Commons

Commercial Use

Distribution

Modification

Private Use

Include License

Include Copyright

List All Changes

Same License For
All Modifications

Limited Liability

Patent Use

Trademark Use

No Warranty

License: https://creativecommons.org/choose/

Blue Oak

Commercial Use

Distribution

Modification

Patent Use

Private Use

Include License

Include Copyright

List All Changes

Disclose Source

Same License For
All Modifications

Limited Liability

Patent Use

Trademark Use

No Warranty

License: https://blueoakcouncil.org/license/1.0.0

Hippocratic

Commercial Use

Distribution

Modification

Private Use

Include License

Include Copyright

Adhere To Human
Rights Principles

Adhere To Human
Rights Laws

Limited Liability

No Warranty

License: https://firstdonoharm.dev/version/2/1/license/

Name Permissions Conditions Limitations

Page of 158 275

If you care about sharing improvements but need some (or all) of the
product not to be open source whilst distributed with the license,
Apache may be for you. If you want to just share improvements of
your open source, GNU GPL v3 will work well. If you want something
simple and permissive, go with MIT. If your license isn’t for code or
software, try Creative Commons. If you require patent and trademark
liability avoided, try Blue Oak. Or if you don’t want your work to be
used for unethical purposes, the Hippocratic license will work well.

terms.txt
It's now worth touching on a file that many websites and web apps
also include, which can be equally full of legal jargon but is just as
important for projects to provide. The terms.txt file (or HTML file) will
contain the terms of service agreement that users refer to when
signing up for your service, using your products, or browsing your
website. Creating one of these files requires time and a fair bit of skill.

Reference

Lawyer Kyle E. Mitchell makes a good argument for the
potential disadvantages for using MIT and BSD licenses,
to read his opinion visit https://writing.kemitchell.com/
2019/03/09/Deprecation-Notice.html

Page of 159 275

https://writing.kemitchell.com/2019/03/09/Deprecation-Notice.html

There’s plenty of statistics about how few people actually read the
terms and conditions, so one thing you’ll need to ensure is, regardless
of what you put within the document, be sure it’s human-readable.
You will be setting the rules for who can use your product or service,
so it’s critical you are clear, concise and don’t re-write war and peace!

Sections you should provide include the following:

Section Description

Overview

By using the services, you agree to the terms.
They exist to protect both you and us. If you
break the terms and conditions, you can’t use
the services anymore. Simple and direct.

Your Account
Your account is your responsibility. If your
account is compromised, we’ll try to help, but
can’t guarantee we can fix any damage.

License To You
You can use our stuff, just don’t copy it unless
authorized to under the license.

Page of 160 275

License To Us
You can upload stuff to us, automatically it’s
licensed under a specific license. Also, don’t
infringe copyrights or do bad stuff.

Responsibilities

You must be over 13. If you're under 18, have a
legal guardian's consent. Don’t lie on the signup
form. Obey the law. If an account is hacked,
please let us know. You’re responsible for your
equipment and Internet access. We don’t
endorse what’s posted, you're responsible for
what you post.

Violations

Don’t upload anything bad. Don’t pretend to be
(or misrepresent / associate with) someone.
Don’t steal login data, personal data or
payment information. Don’t breach intellectual
property rights. Don’t spam or scam on the
service. Don’t send malware. Don’t break, hack
or disrupt the service, exploit code, or steal any
functionality without permission. If we need to
stop a users' account, we will. If we legally have
to provide information to a government
request, we will do, but not otherwise.

Feedback
If you send us feedback, we may use it, in
which case it’ll be covered by these rules.

Payment

All sales are final. If we bill monthly, we will
automatically re-bill every 30 days, if you’re on
an annual plan, we automatically re-bill every
365 days. You may need to pay taxes based on
where you live. If you downgrade, you will lose
access to the features in the higher tier.

Section Description

Page of 161 275

Violations
We will delete anything that violates our terms,
including accounts. We are entitled to take
legal action against violators.

Cancellations

If you don't want an account anymore, it’s up to
you to delete it. If you delete an account, it’s
gone forever. If you’re a paid user, you won’t
be re-billed once your account is deleted.

Modifications

We would rather not shut down a service, but if
we have to, we will do. We don’t need to give
notice. If we change prices, you will receive 30
days notice. If you don’t like changes to the
service, you can choose to leave. We will let
you know of changes to our terms of service.

Copyright
The things you upload to the service are yours
unless licensed otherwise.

Infringement
If you need to report a copyright, patent or
trademark issue, contact us.

Disclaimer

There might be bugs, or downtime, or features
that don’t meet your needs or requirements.
You are responsible for your own actions. We
respond to help requests but give priority to
our paying users. You may have other rights,
and this agreement won’t affect those.

Liability

We aren’t liable for misuse of the service or for
it not meeting your needs, like any downtime
costing you business, etc. We also aren’t liable
for acts of nature or anything beyond our
reasonable control occurring.

Section Description

Page of 162 275

As you can see, there are plenty of different sections which you can
include in your document. Drafting one is usually the job of the legal
department of a business; but for individuals working without legal
support, adapting one you find online or using a template can often
work quite well. Just be certain you keep your terms as short and
jargon free as possible, and be as transparent with visitors as you can.

Indemnity

If you get in trouble with the law (or a third
party) for something you did using our service,
we’ll pass the message onto you, but we’re not
responsible for your actions.

General
If their terms conflict with local laws, the rest still
apply. Questions about the terms should be
directed to us for answering.

Section Description

Reference

For a good example of a terms of service: https://
blog.codepen.io/documentation/terms-of-service/, for
a template you can use: https://www.pandadoc.com/
website-standard-terms-and-conditions-template/

Page of 163 275

https://blog.codepen.io/documentation/terms-of-service/
https://www.pandadoc.com/website-standard-terms-and-conditions-template/

impressum.txt
Similar to a legal disclosure document, an Impressum is a legally
required document that all Germanic websites must include to
declare ownership and authorship of a document. Whilst this won’t
have much of a baring if you’re building a local site for a non-German
country, international sites may want to include this for german
customers (and German websites have to have it by law).

The below describes what you’ll need to include in impressum.txt:

You can format this as either a text or an HTML document (just like any
of these). It’s just my personal preference to use plaintext, as it has no
software requirements to display correctly for end-users. You can
store it in the same location as your other legal web documents.

Section Description

Name Business Name

Address Full Business Address

Contact Email, Phone, Fax, Etc

Owner Name & Position

License Commercial Registration Numbers & VAT Number

URL Address Of Impressum Document

Page of 164 275

Reference
For a detailed guide to Impressum files and what to
include, visit https://www.linkedin.com/pulse/what-
impressum-why-does-facebook-want-one-chris-bangs

Page of 165 275

https://www.linkedin.com/pulse/what-impressum-why-does-facebook-want-one-chris-bangs

accessibility.txt
Everyone agrees about its importance, but it’s still an underestimated
tool in the web developers toolkit. Accessibility and inclusive design
remains something that can bring massive benefits to a wide range of
visitors and can open up an entirely new audience to your services.
Making your site accessible from the offset is the ideal, but having a
statement that declares your accessibility credentials will do a lot to
instill trust, as your transparency over your practices will be shown.

So let’s create an accessibility statement. After all, it will provide users
with information about the inclusiveness of your content and show
your social responsibility and that you care about them. You will first
want to create your accessibility.txt (or HTML) and create a series of
sections as shown in the below table. Remember, as always, to keep
things human-readable. This is especially relevant as individuals may
struggle to read lengthy blurbs of content if they have a disability.

Page of 166 275

This is only a general overview, and you should expand upon it if you
find additional things that your audience would find useful to be
aware of. Accessibility is an ever-expanding subject that needs
constant vigilance, and you shouldn’t take the visitor for granted. By
stating your intentions and (hopefully) backing it up by action in the
way you code and offering compliant, accessible markup, your
products, and services will be all the better for your visitors.

Section Description

Overview
A commitment to inclusive design, not restricted for
people with disabilities, or different backgrounds.

Conformance

Declaration identifying what level of compliance the
service has achieved against the Web Content
Accessibility Guidelines. Also, if your code validates,
you comply with accessibility laws, and if you meet
any other inclusive design accreditation that exists.

Compatibility

Which browsers, devices and environments have
been tested against to ensure compatibility. Also,
what accessibility aids have been tested against to
ensure the greatest possible usability. Note the
syntax languages required for visitors to browse.

Features

Measures you have taken to improve inclusiveness
such as training staff, including users with disabilities
in the testing phase, performance, any code-based
features (alt tags, skip links, etc), and more.

Issues
Any known issues with the website or app (such as
compatibility), which might impact the end-user. List
solutions that can be used until these are fixed.

Contact The point of contact for accessibility related issues.

Page of 167 275

If this wasn’t enough of an incentive, recently, accessibility legal
battles have been escalating and lawsuits against websites have been
running into the thousands with hundreds of millions in damages
being awarded collectively. The risk of being sued shouldn’t be your
only motivation for change, but it should naturally raise awareness
that disabled individuals have equal rights to able-bodied individuals.

privacy.txt
In the Lord of the Rings, Gandalf wisely told Frodo (regarding the ring
of power) to "keep it secret, keep it safe". On the Internet, the ability
to keep things secret and safe is central to providing usable apps and
services to users. The right to privacy isn’t just a bonus feature, it’s part
of the law and something we need to all abide by as providers.

We’ll create our privacy.txt (or HTML) file and keep it with the terms of
service agreement, as the two files go hand in hand when you run a
digital service. Again, if you’re creating one of these files you’ll usually
hand this off to the legal department, but if you don’t have one, as
many of us don’t, you could adapt one you find online (or better yet,
use a pre-made template built by lawyers). You’ll also need it to be
GDPR friendly to ensure that you comply with international laws!

Reference
For an overview of an accessibility statement, with
included examples that you can freely adapt, visit
https://www.w3.org/WAI/planning/statements/

Reference
If you need a privacy policy that has been pre-drafted,
this service will generate one for you which compiles
with the law https://www.freeprivacypolicy.com/

Page of 168 275

https://www.freeprivacypolicy.com/
https://www.w3.org/WAI/planning/statements/

GDPR is a data protection law that the EU brought in that not only
governs data collection by EU companies, but any business that does
business with an individual who lives in the EU. So, unless you’re just
serving to your own nation, you need to be GDPR-compliant to avoid
potential lawsuits. So what content do we need in this policy? On the
next page, I’ve included a table of the sections you’ll need in yours.

Reference

Smashing Magazine has provided an excellent series
on GDRP if you want a detailed guide on the subject
from it's launch https://www.smashingmagazine.com/
2018/02/gdpr-for-web-developers/ to new updates to
the legislation https://www.smashingmagazine.com/
2021/02/state-gdpr-2021-key-updates/

Page of 169 275

https://www.smashingmagazine.com/2018/02/gdpr-for-web-developers/
https://www.smashingmagazine.com/2021/02/state-gdpr-2021-key-updates/

Aside from that, you should have all the documents you’ll need. With
a license, terms of service, impressum, accessibility statement, and
privacy policy you’ll be covered from multiple angles when launching
a project and visitors will know where they stand with your service. As
I noted earlier, it’s worth getting legal advice when drafting some of
these files if you can afford it, but otherwise, pre-drafted documents
on the web, though-generic may generically suit your project.

Section Description

About

Who we are. This policy lays out how we collect, use
and disclose personal information you provide. If you
don’t agree, don’t use the service. We'll also keep you
up-to-date of any changes relating to the policy.

Collection
Types of data collected (Names, Email, Cookies, Logs,
Analytics), Purpose of collection (Why it’s needed, what
it’s used for, and for how long it's kept on the servers).

Processing
Third-party data collection and sharing that occurs.
How information is used generally on the website.

Protection
Measures in place to protect information. Choices to
limit the use of personal data (tracking, close account).

Rights
Your right to access your personal data, correct and
delete your information. Plus complaint's procedure,
GDPR requests and contact us regarding the policy.

Page of 170 275

Chapter 18:
Gathering similar curated content to share
Create a curated list of items, whether links or media, to show your
visitors what they really should subscribe to.

Page of 171 275

feed.opml
Back in Chapter 12, we examined various syndication formats that may
be used to push news and podcasts to subscribers to your websites.
In this chapter, we’re going to look at a related format called OPML,
which is formatted using the XML language and is often used to list
multiples of items (such as a collection of links or media files). And it’s
this very useful feature that could be used to bring value to your site.

Sometimes OPML is used in writing apps to produce table of contents
or document outlines, typically it’s used in feed readers to subscribe
users to multiple RSS feeds at once, but in our case (for websites and
apps), we are going to use it for one of two purposes. We shall use it
for sharing a playlist of music files which you could share with your
visitors, and we shall use it for a list of hyperlinks for use in a library.

Reference
For a comprehensive guide to OPML syntax, read the
specification at http://dev.opml.org/spec2.html

Page of 172 275

http://dev.opml.org/spec2.html

Overview
Every OPML file begins the same, you’ll create your feed.opml file
adding the XML doctype along with the OPML tags, plus within this
(just like in HTML) you’ll want to add a head and body element.

<?xml version="1.0" encoding="utf-8"?>
<opml version="1.0">

<head>

</head>
<body>

</body>
</opml>

Within the head element, there are several elements we can use. Of
them all, only the title is required. Once you’ve added your title tags,
you can begin filling your body element with either a playlist of music
files or a list of hyperlinks using the elements from the table below.

Element Description

title The title of the document.

ownerName The individual who created the document.

ownerEmail The email of the person who created the file.

ownerId The website where the creator can be contacted.

dateCreated The date and time of the document's creation.

dateModified The date and time of the file's modification.

docs A website link to the OPML specification.

expansionState Comma separated list of line numbers to expand.

Page of 173 275

Categories
So let’s start by grouping our playlist into categories. Within the body
tag, you’ll want to add two outline elements with text attributes that
contain a text description of what best matches the style of music
that’ll play within them, or the types of hyperlinks that are contained
within that section. Grouping is helpful for users to quickly navigate a
potentially long list of items, as they can then find relevant results.

<outline text="Classics">

</outline>
<outline text="Fun">

</outline>

Content
Next, we need to begin customizing the OPML file for our content
types. First up is the playlist of music files. You might automatically
think of this as being useful for something like podcasts - and
arguably it could be used for this purpose; though a syndication
format like RSS is better suited as it allows images and descriptions
and other useful descriptions. OPML music playlists would be ideal
instead for a custom Spotify playlist (which is free of JavaScript!).

vertScrollState The line to be displayed at the top of the window.

windowTop Pixel location of the top edge of the window.

windowLeft Pixel location of the left edge of the window.

windowBottom Pixel location of the bottom edge of the window.

windowRight Pixel location of the right edge of the window.

Element Description

Page of 174 275

Then there is the list of hyperlinks. This is where I think OPML is at its
most useful, as you could use it for sharing a list of literally anything. A
list of links to your friends websites, resources you’ve bookmarked,
Amazon links to books worth buying, collated educational material on
a subject, a birthday, or wedding list, or pretty much anything else
that you could group together. It’s entirely up to your imagination.

No matter your choice, within each of the categories you will want to
include some songs or hyperlinks. Below is an example of what your
code will look like. All outline elements contain a type attribute that
describes whether it’s a song or link. While the attributes used differ
slightly, they should be easy enough to manage in one file. You can
mix and match both links and media within a single file if you wish.

Code for Songs:

<outline text="Song.mp3" type="song" f="Artist - Song.mp3"/>

Code for Hyperlinks:

<outline text="Useful Website" type="link" url="https://
example.com"/>

Finally, as with many of these unusual file types you’ll want to include
a reference to the file in the head of your HTML document (as certain
feed readers can take advantage of these files). Plus you could also
link to the file directly to allow visitors to view the links natively in the
web browser (if supported) as the content (and its links) should be
accessible even if the visitor doesn't have access to a feed reader.

<link rel="alternate" type="application/text+xml" href="opml.xml">

This concludes the chapter on OPML. While RSS is great for pushing
fresh content to visitors, and websites are great for allowing people to
read content in a stylish manner, OPML allows you to compile lists of
links you think will be useful and offer them to visitors. It’s a small,
useful file that you might yet find some interesting use-cases for in
your workflow. Who knows, with a little JavaScript you could even
build a media player that can use the OPML playlists you've built.

Page of 175 275

Chapter 19:
Getting your layout optimized for preferences
Generate a default dark mode, prefers reduced motion, monochrome
& prefers reduced data stylesheet.

Page of 176 275

modes.css
In a previous chapter we've examined the wonderful world of HTML,
next it's time to look at some CSS that can be used to benefit your
visitors. Or to be more specific, some media queries you can use to
target certain browsing environments that a visitor might potentially
be encountering. We won't be targeting screens or printers in this
chapter (those are technical enough to require their own dedicated
chapters), but these cover more niche cases of customization.

For this book, I've chosen to separate any media query that changes
the website or apps layout based on the user's environment into a
separate file called modes.css (away from the base styles.css and
print.css files), however if it's your personal preference to reduce
HTTP requests and manage your CSS under one roof, you can keep it
in the one CSS document. Ready to begin? Let's create this modes.css
document and start styling our HTML with some preferential CSS.

Reference

CSS is an evolving language with more standards being
produced. To learn more about the work being done
that affects media queries, read the specifications at
https://www.w3.org/Style/CSS/specs.en.html and
https://www.w3.org/TR/css3-mediaqueries/

Reference

If you want to test the effects of the below, this article
should help you get a true-to-life simulation https://
www.a11yproject.com/posts/2020-01-23-operating-
system-and-browser-accessibility-display-modes/

Page of 177 275

https://www.w3.org/Style/CSS/specs.en.html
https://www.w3.org/TR/css3-mediaqueries/
https://www.a11yproject.com/posts/2020-01-23-operating-system-and-browser-accessibility-display-modes/

Inverted Colors
MacOS (and more specifically Safari) supports an unusual media
query called inverted-colors, which detects if the OS has the
accessibility mode set to invert all the colors on the screen. This may
seem like a variation on the concept of light and dark mode, but it's
useful and designed by Apple for people with low or impaired vision
to help them navigate the screen. If you change colors, make sure
you provide enough contrast for text visibility when colors flip.

@media (inverted-colors: none) {

}
@media (inverted-colors: inverted) {

}

Page of 178 275

Light Level
Next, we have a useful tool which is useful especially on mobile
devices and tablets called the light-level media query. If you use a
smartphone regularly, you'll know the ambient light sensor alters the
brightness of your screen based on how light or dark it is where you
are. Using light level, you can change your visuals (for example the
color scheme) based on if the visitor is reading in the dark (dim), in
the sun (washed), or in a fairly lit region (normal). Pretty cool stuff.

@media (light-level: washed) {

}
@media (light-level: normal) {

}
@media (light-level: dim) {

}

Page of 179 275

Pixel Density
If you want your images to look great on a variety of different
devices, you'll know that sometimes, visitors will occasionally have
hardware with different resolutions and pixel densities. To
compensate for this, the min-resolution media query allows us to
target devices by 1x (for regular) or 2x (for retina) so that we can serve
images only to those devices that will appreciate them. Safari doesn't
support min-resolution, so it has its own prefix to enable support.

@media (min-resolution: 1x), (-webkit-min-device-pixel-ratio: 1) {

}
@media (min-resolution: 2x), (-webkit-min-device-pixel-ratio: 2) {

}

Monochrome
As web developers, we take color support for granted. We use it
liberally within our layouts and assume (naturally) that our visitors can
see everything that is on our screens. Occasionally, however, a visitor
might (for accessibility reasons) choose to turn their screen to
monochrome mode, either to save battery (on mobile devices) or to
improve contrast and their ability to read content on screen. Using
color and monochrome media queries can help you out here.

You could provide a dedicated experience for eInk readers (for
example) which cannot see in color, or using the print media type you
could give a custom layout to monochrome printers. You could swap
out images for alternatives which look better without color, provide a
more stripped back visual experience or a layout with less clutter in
terms of background images and contrast, with more focus placed
upon the content. Visitors may prefer this focused version!

Page of 180 275

@media (color) {

}
@media (monochrome) {

}

Page of 181 275

Mouse Pointer
Next we shall examine the mouse pointer. For years, it was a hard job
trying to create equal navigation systems for desktop and mobile due
to CSS hover effects not being available to mobile devices. Now,
thanks to this media query, you can code alternative layouts to match
the type of pointer they have and avoid needing to rely upon having
the same problematic browsing experience on all platforms.

To cover all of your pointer bases, do the following: If you're on a
touch only device, set the hover to none and the pointer to coarse. If
you use a stylus on a touchscreen, set the hover to none and the
pointer to fine. If you use a controller like a joystick or Wii-mote, then
set hover to hover and pointer to coarse. And if you want a media
query for normal situations, set hover to hover and pointer to fine.

@media (hover: none) and (pointer: coarse) {

}

Dark Mode
Next we'll cover the popular feature of light and dark mode, which
has become a prerequisite for any site or app. Using the prefers-
color-scheme media query, we can replace colors and images on our
site to give a fluid experience for users who prefer to browse using
the feature. Why would we do it? For those with OLED screens, it will
save battery. Dark mode may help reduce eye strain too.

@media (prefers-color-scheme: dark) {

}
@media (prefers-color-scheme: light) {

}

Page of 182 275

If you have the time and budget to implement a proper dark mode
on your site, it's well worth it for the user-experience alone, as many
will have a preference. If you don't, below is a rapid and dirty method
of implementing a default (though use it at your own risk).

@media (prefers-color-scheme: dark) {
:root {

background: #101010;
filter: invert(1) hue-rotate(180deg); }
canvas, img, video {

filter: invert(1) hue-rotate(180deg); }
}

High Contrast
Much less extreme than inverting colors, the prefers-contrast media
query which is used by a significant number of visually impaired web
users and those with medical conditions such as migraine disorders
(using a custom color profile) is a great accessibility media query to
include in your toolchain. You will be able to change your layout
based on whether the user prefers a reduced (regular site) or higher
contrast version of your website so that your content becomes easier
to read (or softer on the eyes). It's well worth investigating.

Reference

For a more comprehensive guide to WHCM mode,
read https://www.smashingmagazine.com/2022/06/
guide-windows-high-contrast-mode/ or https://
adrianroselli.com/2021/02/whcm-and-system-
colors.html

Page of 183 275

When supported in all modern browsers, it will use the following:

@media (forced-colors: none) {

}

@media (forced-colors: active) {

}

In Apple Safari (where it works), You use the following:

@media (prefers-contrast: more) {

}
@media (prefers-contrast: less) {

}

Page of 184 275

In Microsoft Edge (where it works), You use the following:

@media (-ms-high-contrast: active) {

}
@media (-ms-high-contrast: black-on-white) {
}

@media (-ms-high-contrast: white-on-black) {
}

Data Saver
Next we need to talk about bandwidth. It's not something that's very
fun to cover because every website these days is pretty greedy. And
no matter how much everyone harps on about improving a site's
performance, the web keeps getting increasingly bloated. Using the
upcoming media query called prefers-reduced-data, we will be able
to use CSS to prevent the unnecessary download of background
images, fonts, or other resources requested via CSS. Useful indeed.

@media (prefers-reduced-data: reduce) {

}

Reduced Motion
Next we're going to look at an accessibility aid that can improve
things for people who suffer from motion sickness, migraines, inner-
ear conditions or epilepsy. The prefers-reduced-motion media query
allows us to show less animated effects on the screen to those who
request it. You should note that this doesn't mean that visitors want no
animation to appear, it just means they want less of it, and it to be
much more carefully used for their benefit as they are less tolerant.

Page of 185 275

@media (prefers-reduced-motion: reduce) {

}
@media (prefers-reduced-motion: no-preference) {

}

If you're implementing a reduced motion feature-set on your website
or app, make sure to include things like CSS and JavaScript animations
as well as animated GIFs and videos, as they can also be triggers for
people with medical conditions. If you don't have time to craft a
custom stylesheet, the below quick and dirty script should work by
targeting every element and reducing its animation (it won't work on
images and video though, so you'll want to expand upon the code).

@media (prefers-reduced-motion: reduce), (update: slow) {
*:not(.safe-animation),
*:not(.safe-animation)::before,
*:not(.safe-animation)::after {

animation-delay: -1ms !important;
animation-duration: 1ms !important;
animation-iteration-count: 1 !important;
background-attachment: initial !important;
scroll-behavior: auto !important;
transition-delay: -1ms !important;
transition-duration: 1ms !important; }

}

Reduced Transparency
Another accessibility aid which is upcoming in the CSS specifications
is prefers-reduced-transparency, which tells browsers that the visitor
would prefer not to see too many background images or overlapping
features that might cause distractions. Remember that visitors with
memory problems, dyslexia, or learning difficulties could be affected.
Think of this media query as a minimalistic workspace where visitors
can engage with content with a barebones, clean colored layout.

Page of 186 275

@media (prefers-reduced-transparency: reduce) {

}
@media (prefers-reduced-transparency: no-preference) {

}

Foldable Displays
Finally, we need to examine something pretty new and exciting that
Chrome recently added (and other browsers won't be far behind)
called the screen-spanning media query aimed at duel-screen
devices. Yep, for all those new folding phones that use two displays,
this media query can allow you to ensure your site handles the fold
that occurs between both sides of a display correctly. You can also go
horizontal or vertical too, as the fold changes if users rotate a screen.

Page of 187 275

@media (screen-spanning: single-fold-horizontal) {

}
@media (screen-spanning: single-fold-vertical) {

}

Adding these components can bring more accessibility, performance,
and visual customization for the visitor. It will take time to implement
the styles into your workflow, but the benefits outweigh the input. In
the future, we'll likely see more media queries like detection for
scripting, update refresh timing, HDR detection, and more. Until then,
it's worth keeping an eye on new CSS specifications that are released.

Reference
For more information about supporting folding
screens, read this article https://docs.microsoft.com/
en-us/dual-screen/web/css-media-spanning

Reference

The Polypane team have put together an equally
comprehensive guide to media queries online if you
are interested in the latest cutting edge developments
in CSS at https://polypane.app/blog/the-complete-
guide-to-css-media-queries/

Page of 188 275

https://polypane.app/blog/the-complete-guide-to-css-media-queries/
https://docs.microsoft.com/en-us/dual-screen/web/css-media-spanning

Chapter 20:
Making a web browser search compatible
Add your sites search engine easily into the user's browser to improve
their access to your service.

Page of 189 275

opensearch.xml
Making your website more search engine friendly is the goal of most
projects, as being visible to the widest possible audience allows you
to stay in business. While traditional SEO relies on using techniques
that third-party search engines will discover you using via their robots,
spiders and algorithms; the OpenSearch system lets you embed your
site's search engine into the users' browsers search from URL bar list.

It might not seem like much at first, but the OpenSearch file lets
visitors to your website easily find items in your store without having
to first load up your homepage. They can type in a shortcut followed
by their search terms in their URL bar and be driven straight to your
search engine's results page. It may increase sales conversions for
people on desktop devices who are after information in a hurry.

Reference
For a comprehensive guide to OpenSearch, read the
specification at https://github.com/dewitt/
opensearch/blob/master/opensearch-1-1-draft-6.md

Page of 190 275

https://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.md

Search Creation
To create an opensearch.xml file, you'll want to create a blank
document in the base directory of your website. Within it, you will
need an XML declaration and some OpenSearchDescription elements
to contain all the available tags to describe your search engine to
browsers. Below is a sample of the code you'll need to successfully
create an OpenSearch document with a table listing all the available
elements which exist. As you can see, URL has no closing tag but
contains a MIME type attribute, plus a template (URL) attribute.

<?xml version="1.0" encoding="utf-8"?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/
opensearch/1.1/">

<ShortName>Title</ShortName>
<Description>Description.</Description>
<Url type="text/html" template="http://www.google.com/
search?
sitesearch=https%3A%2F%2Fexample.com%2F&as_q={sea
rchTerms}"/>

</OpenSearchDescription>

Page of 191 275

Element Required Description

AdultContent No True or False to being child-friendly.

Attribution No Copyright details for the document.

Contact No Email of documents maintainer.

Description Yes Description of the search engine.

Developer No The creator of the document.

Image No
ICO (16×16) & PNG (64×64) with width,
height and (MIME) type attributes set.

InputEncoding No Encoding formats search support.

Language No The language of search results.

LongName No 48 or less character extended title.

OutputEncoding No Encoding formats results supports.

Query No
Search query that can be performed
via searchTerms and role attributes.

ShortName Yes Title that describes the search engine.

SyndicationRight No
Stop requesting, showing or sending
search results to visitors or others.

Tags No Space separated tags to identify data.

Url Yes
Url for the search. Include parameters
like {searchTerms}, {startPage?} and
pageOffset (page number) attribute.

Page of 192 275

Integration
Once you've included any elements you wish to add into your file, we
must include a reference to the completed OpenSearch document
within the head of our HTML document. This enables browsers to find
and utilize the format and add the search engine into the list of
choices for visitors. Include it within every page to ensure that
browsers add it to their list when visitors arrive at your site.

<link rel="search" type="application/opensearchdescription+xml"
href="opensearch.xml">

With this small file On your website, you can make your content easier
to search. It's tiny files like this that can make a real difference to your
user-experience within the web browser. If you don't have a search
engine on your site and just have pages filled with content, you could
link it to a Google site search (as used in the example earlier) to help
visitors find a specific page there after quicker. This may be especially
useful if you have thousands of pages of content on your website.

Page of 193 275

Chapter 21:
Declaring privacy rules for old IE versions
While this standard is obsolete for browsers apart from IE9 or lower,
you can still build the privacy file here.

Page of 194 275

p3p.xml
Internet Explorer, the great gremlin of the Web. Feared by many web
developers and causer of many a sleepless night, it certainly gained a
rightful reputation over its history as a destroyer of clean markup and
a breaker of semantic designs. Of all its many quirks, for this chapter
we are going to explore how it (failed to) handle data collection to
benefit of user privacy. This comes with a bit of history for Internet
fans. It's also one of those standards you may find you don't require.

Reference
For a comprehensive guide to P3P, read the
specification at https://www.w3.org/TR/P3P/

Page of 195 275

https://www.w3.org/TR/P3P/

History
Back before browsers had data handling features baked in, the
thought among browser makers was that web developers should be
the ones to protect users from bad code through coding best
practices. The best example of this gone wrong is the P3P file, a
standard devised by the W3C in which developers would control
which data that would be harvested for their own good and the
thought was this would be enough to stop bad actors from working.

Naturally, this didn't work as expected. Only Microsoft implemented
the P3P policy system into their browser, thinking it was a good idea.
Additionally, the only people who actually added P3P files to their
sites were individuals who cared about privacy to begin with and
didn't violate their users' rights (making it literal abandonware). Bad
actors ignored P3P and carried on as normal, leaving most visitors to
sites with no protection, hence our current situation where users
control of their privacy and can block data collection at source.

So far, so historical. Why is this relevant for current users? Well, until
Internet Explorer 9, the P3P policy was still actively being
implemented within Microsofts browser (despite the low uptake of
about 6%). So if you do have an old network you need to maintain
such as an embedded system or Intranet and most users are required
to use IE9 or lower, the file could be of benefit for reducing data
gathering within websites, otherwise, skip this chapter entirely.

Page of 196 275

Boilerplate
To create a P3P.xml, create a blank document and place it in the base
directory of your website. You will want to put all the below code
within the file and save it "as is". There's not much worth configuring.

<META xmlns="http://www.w3.org/2002/01/P3Pv1">
<POLICY-REFERENCES>

<EXPIRY max-age="172800"/>
<POLICY-REF about="/P3P/Policies.xml#first">

<INCLUDE>/*</INCLUDE>
<EXCLUDE>/cgi-bin/*</EXCLUDE>

</POLICY-REF>
</POLICY-REFERENCES>

</META>

Finally, to complete the process, add a reference to the file in the
head of your HTML document so that Internet Explorer can utilize it.

<link rel="P3Pv1" href="p3p.xml">

Remember that this specification is both obsolete and deprecated, so
only use a P3P document if you have a user-base of Internet Explorer
9 or less (as mentioned above). I've included it for historical reasons,
as it's a unique and another tiny web format that did for a small-time
try (aimlessly in this case) to improve a user's web experience.

Page of 197 275

Chapter 22:
Ensuring your site's declared child-friendly
Are children visiting your site? Add content labelling plus optional
support for PICS for older schemes.

Page of 198 275

powder.xml
Keeping children safe while online is one of the greatest challenges
facing anyone who runs any website or app with any kind of social
interaction. Critical to this challenge is the correct labelling of content
and ensuring that search engines can filter anything that is unsuitable
for young children effectively. Using web standards like Powder (and
its predecessor PICS) and the digital labelling systems which exist, we
can achieve just this on our products to help protect young people.

Page of 199 275

The benefit of these files goes beyond content filtering in search
engines. Social networks which may have website content posted
can be filtered correctly. Web browsers with parental controls can
block inappropriate websites. Parental control software within an
operating system, router, or software can know whether your site or
sections of it are safe for children to browse. As you can see, without
one of these files, parents, and kids will be literally browsing blind.

Powder Creation
So let's create a powder.xml file (the modern standard). First, we will
need to make the document and place it somewhere in your site's
structure. Within the file you'll need an XML doctype, a powder tag
with relevant xmlns attributes, and two tags; an attribution element
(for the head data) and an ol element (for the body data).

<?xml version="1.0" encoding="utf-8?>
<powder xmlns="http://www.w3.org/2007/05/powder#"
xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:rdf="http://
www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:icra="http://
www.icra.org/rdfs/vocabulary2008#">

<attribution>

</attribution>

</powder>

Reference
For a comprehensive guide to Powder, read the
specification at https://www.w3.org/TR/2009/NOTE-
powder-primer-20090901/

Page of 200 275

https://www.w3.org/TR/2009/NOTE-powder-primer-20090901/

Attribution
Next, we need to add the elements within the attribution tags. Within
the issuedby tag, you should provide a URL about the individual who
published the Powder document (perhaps this is where a dublin.rdf
file (see Chapter 8) would work well. The issued element will list the
date and time the Powder file was published. The certifiedby element
will link to a third party that can verify your labelling credentials.

<issuedby src="http://authority.example.com/company.rdf#me" />
<issued>2021-10-14T00:00:00</issued>
<certifiedby src="http://independent.example.com?
verify=http%3A%2F%2Fexample.com%2Fpowder.xml" />

ICRA Labels
Within the OL tags, we need to provide information about the site that
will label it correctly for age appropriateness. Each section of your
project will need a dr element. Within that, it will need an iriset
element that has an includehosts tag with the domain of your site and
an includepathstartswith tag with the path to be labelled. It will also
need a descriptorset element which we will add ICRA labels and a
description of the content appropriateness using the displaytext
element. Sounds like a confusing mess? Check the following example.

Page of 201 275

<dr>
<iriset>

<includehosts>example.com</includehosts>
<includepathstartswith>/path</includepathstartswith>

</iriset>
<descriptorset>

<icra:nz>1</icra:nz>
<icra:sz>1</icra:sz>
<icra:vz>1</icra:vz>
<icra:lz>1</icra:lz>
<icra:hz>1</icra:hz>
<icra:dz>1</icra:dz>
<icra:uz>1</icra:uz>
<icra:pa>1</icra:pa>
<displaytext>No nudity; No sexual material; No violence; No
potentially offensive language; No potentially harmful
activities; No potentially disturbing material; No user-
generated content, Contains advertising.</displaytext>

</descriptorset>
</dr>

You'll probably want to replace them with your own (plus adding or
removing as appropriate) to match your site's content, providing a
description that matches the project's circumstances most accurately.

You see all those ICRA elements with the 1 values within them? That's
what describes exactly whether the content is safe for kids or not.
Let's examine this further. Using the ICRA label decoder, you browse
through the list and add an element with the two required characters
preceded by icra: and provide a value matching what the decoder
asks for into the list. So for "Mild expletives" you would need to add
<icra:lc>1</icra:lc> to descriptorset. You can build a profile using this.

Page of 202 275

Integration
You'll also need to add a link to the Powder file in the head of your
HTML file so browsers, search engines, and social networks know that
the content on the website may be age appropriate.

<link rel="help" type="application/powder+xml"
href="powder.xml">

pics.rdf
While superseded and deprecated by Powder, the PICS format is still
worth talking about as older web browsers (namely old versions of
Internet Explorer 6-8) take advantage of it when using built-in parental
control filters upon websites. There may also be cases where some
older content advisory websites may look for PICS data rather than
Powder data due to a lack of funding to upgrade their legacy systems
(consider government IT systems as a prime example).

Reference

The four labelling schemes can be found at http://
www.icra.org/ (ICRA), https://web.archive.org/web/
20080108223152/http://www.icra.org/decode/ (RSAC),
http://www.safesurf.com/ssplan.htm (SafeSurf), and
https://web.archive.org/web/20060706165722/http://
www.weburbia.com/safe/ (WebUrbia).

Page of 203 275

http://www.icra.org/
https://web.archive.org/web/20080108223152/http://www.icra.org/decode/
http://www.safesurf.com/ssplan.htm
https://web.archive.org/web/20060706165722/http://www.weburbia.com/safe/

PICS Creation
As such, if you're working with websites that need to be used upon
legacy systems that may not be upgraded very frequently, or perhaps
are known for having (or are dependent upon using) old versions of
Microsoft Internet Explorer; it just might be worth building one of
these files in addition to a Powder file. To create a pics.rdf file, you
make your blank document in the same location as your Powder file
(anywhere on your site) and include an XML doctype with RDF tags.

Page of 204 275

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:dcterms="http://purl.org/dc/terms/" xmlns:label="http://
www.w3.org/2004/12/q/contentlabel#" xmlns:icra="http://
www.icra.org/rdfs/vocabularyv03#" xmlns:rsac="http://
www.icra.org/rdfs/vocabularyv01#" xmlns:ss="http://
www.safesurf.com/ssplan/" xmlns:sfk="http://
www.weburbia.com/safe/ratings/ ">

</rdf:RDF>

Attribution
Within the rdf tag, you will need a description element that contains
creator tags referencing the three parental labelling authorities we
shall use (they're the most well established providers). We also require
an issued Dublin tag for when the PICS label was published, and the
authorityFor element that references the labels we're utilizing. We also
require a ruleset element that attaches your domain name to this file.

<rdf:Description rdf:about="">
<dc:creator rdf:resource="http://www.icra.org" />
<dc:creator rdf:resource="http://www.safesurf.com" />
<dc:creator rdf:resource="http://www.weburbia.com/safe" />
<dcterms:issued>2021-03-13</dcterms:issued>
<label:authorityFor>http://www.icra.org/rdfs/
vocabularyv03#</label:authorityFor>

</rdf:Description>
<label:Ruleset>

<label:hasHostRestrictions><label:Hosts><label:hostRestriction>e
xample.com</label:hostRestriction></label:Hosts></
label:hasHostRestrictions>
<label:hasDefaultLabel rdf:resource="#label_1" />

</label:Ruleset>

Page of 205 275

Labelling Schemes
Next, within the rdf tags, we need to include content labels (just like
we did in the Powder file). You'll notice that I provide content not
from one but from four different authorities (ICRA, RSAC, SafeSurf &
WebUrbia) as back when PICS was the standard, no labelling system
held dominance, and it was best to cover all of your bases to ensure
compatibility. A basic example using all four is shown below.

<label:ContentLabel rdf:ID="label_1">
<rdfs:comment>ICRA Ratings</rdfs:comment>
<icra:nz>1</icra:nz>
<icra:sz>1</icra:sz>
<icra:vz>1</icra:vz>
<icra:lz>1</icra:lz>
<icra:oz>1</icra:oz>
<icra:cz>1</icra:cz>
<icra:xz>1</icra:xz>

</label:ContentLabel>
<label:ContentLabel rdf:ID="label_2">

<rdfs:comment>RSAC Ratings</rdfs:comment>
<rsac:l>0</rsac:l>
<rsac:n>0</rsac:n>
<rsac:s>0</rsac:s>
<rsac:v>0</rsac:v>

</label:ContentLabel>
<label:ContentLabel rdf:ID="label_3">

<rdfs:comment>SafeSurf Ratings</rdfs:comment>
<ss:ss000>1</ss:ss000>

</label:ContentLabel>
<label:ContentLabel rdf:ID="label_4">

<rdfs:comment>WebUrbia Ratings</rdfs:comment>
<SFK:S>0</SFK:S>

</label:ContentLabel>

Page of 206 275

Summary
Once you've marked up your content labels from each authority, you
will want to include a reference to your finished PICS file within the
head of your HTML document (like with the Powder file) so that any
parental guidance software or search engine can detect the format.

<link rel="help" type="application/rdf+xml" href="pics.rdf">

As stated earlier, unless you're supporting older browsers and archaic
systems, the PICS file shouldn't (thankfully) be required to get your site
child-friendly. Having to support numerous ratings labels was a bit of
a drag. It's worth having a powder.xml file if you have any content
that serves a younger audience, or you want to ensure that kids aren't
going to accidentally browse there with parental tools switched on.

Reference
For a comprehensive guide to PICS, read the
specification at https://www.w3.org/PICS/

Page of 207 275

https://www.w3.org/PICS/

Chapter 23:
Reduce the impact of pages on printers
Set up a default stylesheet for when your website is being printed or
exported to a document like PDF.

Page of 208 275

print.css
Once upon a time, the world existed to be printed. Loads of pages of
content were printed onto pieces of paper regularly. These days, with
the age of the Internet, it's not as common due to the digitization and
connectivity of data (being that we're always online). However, don't
be fooled into thinking that printing has entirely gone away. People
sometimes choose to print data for good reasons. Tickets, posters,
leaflets, device-free zones, images, and more being prime examples.

Ensuring that your website works on the printed page still makes
sense, even in the post paper era. Covid-19 accelerated the decline of
printing due to people not wanting to pass around as many physical
documents, and ink costs being more costly than fine champagne.
Though, personal paper items and printing for PDF export to keep a
copy offline remain just as popular as they've always been.

Page of 209 275

You can create a simple printer friendly document using the print CSS
stylesheet (@media print), and customize your document using the
Google Chrome print preview window to see how the finished
product will look. Or if you want something quicker and easier, you
can use a pre-built library. Want one? I've built a library called Printed
and alongside some essential components, it has some useful extras.

CSS Reset
To get started, create a print.css file or open up an existing stylesheet
and insert a @media print reference with the below sample code. It
will provide a CSS reset which tweaks every HTML element to behave
for printers. It also includes a websafe typeface that should look good
on every operating system, plus it will print citations for quotes, list
any abbreviations, show data values, display timing events, and
highlight keyboard characters when they're mentioned in documents.

Reference

For a comprehensive guide to how CSS handles media
types, read the specification at https://www.w3.org/
TR/css3-mediaqueries/ or read the guide at https://
developer.mozilla.org/en-US/docs/Web/CSS/
Media_Queries/Using_media_queries

Reference
For the latest updates to my print stylesheet and to get
the latest features, visit https://printedcss.com/

Page of 210 275

https://www.w3.org/TR/css3-mediaqueries/
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://printedcss.com/

@media print {
* { margin: 0; padding: 0; }
body { background-color: #ffffff; color: #000000; font-family:
Constantia, Palatino, 'Book Antiqua', 'Palatino Linotype', serif;
line-height: 1.5; }
blockquote code { border: 0; }
blockquote, code, kbd, pre { border: 1px solid grey; }
table, td, th { border-bottom: 1px solid black; }
abbr[title], acronym[title] { border-bottom: 1px dotted grey; }
table { border-collapse: collapse; }
aside { border-left: 2px solid grey; padding-left: 1em; }
del, s { color: grey; }
a, canvas, img { color: inherit; }
blockquote:after { content: attr(cite); }
dt:after { content: ":"; }
abbr:after, acronym:after { content: " (" attr(title) ")"; }
data:after { content: " (" attr(value) ")"; }
time:after { content: " (" attr(datetime) ")"; }
q:after { content: "\201D" " (" attr(cite) ")"; }
canvas, html:after, img, picture { display: block; }
applet, audio, blink, dialog, embed, form, iframe, map, map +
img, marquee, menu, nav, object, video { display: none; }
code, kbd, pre, samp, tt, var { font-family: 'Courier New',
Courier, 'Lucida Sans Typewriter', 'Lucida Typewriter',
monospace; font-size: 0.8em; }
h1 { font-size: 3rem; }
h2 { font-size: 2rem; }
h3 { font-size: 1.75rem; }
h4 { font-size: 1.5rem; }
h5 { font-size: 1.25rem; }
h6 { font-size: 1rem; }
blockquote:after, q:after { font-size: 0.75em; }
caption, figcaption { font-style: italic; }
dt { font-weight: bold; }
pre { height: auto; hyphens: auto; overflow: auto; }
h1, h2, h3, h4, h5, h6 { margin: 1rem 0; page-break-after: avoid; }

Page of 211 275

canvas, img, svg { margin: 1em auto; }
address, blockquote, details, dl, figure, ol, p, pre, ruby, table, ul {
margin: 1em 0; }
dd, ul, ol { margin-left: 2em; }
blockquote p { margin-top: 0; }
img { border: 0; max-width: 50vw; }
p, pre, table { orphans: 4; widows: 4; }
td, th { padding: 0.1em 0.2em; }
code, kbd { padding: 0.2em 0.3em; }
blockquote, pre { padding: 0.5em 1em; }
html { padding: 2em 4em; }
article { page-break-before: always; }
a, blockquote, canvas, details, dl, figure, img, ol, picture, svg,
table, ul { break-inside: avoid; page-break-inside: avoid; }
canvas, figure, h1, html:after, img, picture, svg, table { text-align:
center; }
a, abbr, acronym, ins { text-decoration: none; }
u { text-decoration-style: wavy; }
table { width: 100%; }
a, blockquote:after, pre, q:after { word-wrap: break-word; }

}

Page of 212 275

Minimal Theme
The next piece of code is entirely optional, known as a flag. If you
want a minimal layout which uses even less paper than the default
one that is provided in the reset, you can set data-theme="print-min"
to the HTML body element. It works alongside the standard theme.

html[data-theme=print-min] mark { background-color:
transparent; }
html[data-theme=print-min] abbr, html[data-theme=print-min]
acronym, html[data-theme=print-min] aside, html[data-
theme=print-min] blockquote, html[data-theme=print-min] code,
html[data-theme=print-min] kbd, html[data-theme=print-min] pre,
html[data-theme=print-min] table, html[data-theme=print-min] td,
html[data-theme=print-min] th { border: 0; padding: 0; }
html[data-theme=print-min] a:not(:local-link):after { content: ""; }
html[data-theme=print-min] a[href^="http"]:after, html[data-
theme=print-min] a[href^="ftp"]:after { content: ""; }
html[data-theme=print-min] blockquote:after, html[data-
theme=print-min] q:after { content: ""; }
html[data-theme=print-min] canvas, html[data-theme=print-min]
img, html[data-theme=print-min] svg { display: none; }
html[data-theme=print-min] h1 { font-size: 2rem; }
html[data-theme=print-min] h2 { font-size: 1.8rem; }
html[data-theme=print-min] h3 { font-size: 1.6rem; }
html[data-theme=print-min] h4 { font-size: 1.4rem; }
html[data-theme=print-min] h5 { font-size: 1.2rem; }
html[data-theme=print-min] h6 { font-size: 1rem; }
html[data-theme=print-min] h1, html[data-theme=print-min] h2,
html[data-theme=print-min] h3, html[data-theme=print-min] h4,
html[data-theme=print-min] h5, html[data-theme=print-min] h6
{ margin: 0.5rem 0; }
html[data-theme=print-min] body { line-height: 1.2; }
html[data-theme=print-min] { padding: 1em 2em; }

Page of 213 275

File Types
Occasionally, when we go to print a file, we see links on sites but
have no idea about what application these files might be linked with,
or in many mime types, associated with. The below aims to solve the
problem by covering a wide range of formats with a description, and
also provide all hyperlink types with a full-length URL by the link text.

$a:after > img { content: ""; }
a[href^="#"]:after, a[href^="javascript:"]:after { content: ""; }
a:not(:local-link):after { content:" <" attr(href) "> "; }
a[href^="http"]:after, a[href^="ftp"]:after { content: ": " attr(href); }
a[href^="mailto"]:before, a[href^="message"]:before { content:
"Email: "; }
a[href^="maps"]:before { content: "Maps: "; }
a[href^="webcal"]:before { content: "Calendar: "; }
a[href^="tel"]:before, a[href^="facetime"]:before, a[href^="facetime-
audio"]:before, a[href^="sms"]:before, a[href^="irc"]:before,
a[href^="skype"]:before, a[href^="whatsapp"]:before, a[href^="fb-
messenger"]:before, a[href^="signal"]:before { content: "Contact: "; }
a[href^="twitter"]:before, a[href^="fb"]:before,
a[href^="snapchat"]:before, a[href^="instagram"]:before { content:
"Social: "; }
a[href^="spotify"]:before, a[href^="music"]:before,
a[href^="feed"]:before, a[href^="podcast"]:before { content:
"Media: "; }
a[href$=".zip"]:after, a[href$=".rar"]:after, a[href$=".7z"]:after
{ content: " (Archive)"; }
a[href$=".mp3"]:after, a[href$=".m4a"]:after, a[href$=".mp4"]:after,
a[href$=".aac"]:after, a[href$=".flac"]:after, a[href$=".ogg"]:after,
a[href$=".oga"]:after, a[href$=".opus"]:after { content: " (Music)"; }
a[href$=".mkv"]:after, a[href$=".mp4"]:after, a[href$=".mpg"]:after,
a[href$=".mpeg"]:after, a[href$=".hevc"]:after, a[href$=".mov"]:after,
a[href$=".webm"]:after, a[href$=".avi"]:after, a[href$=".ogv"]:after
{ content: " (Video)"; }

Page of 214 275

a[href$=".svg"]:after, a[href$=".png"]:after, a[href$=".webp"]:after,
a[href$=".jpg"]:after, a[href$=".tiff"]:after, a[href$=".gif"]:after
{ content: " (Image)"; }
a[href$=".pdf"]:after, a[href$=".epub"]:after, a[href$=".mobi"]:after
{ content: " (eBook)"; }
a[href$=".pages"]:after, a[href$=".doc"]:after, a[href$=".docx"]:after,
a[href$=".odt"]:after, a[href$=".rtf"]:after, a[href$=".txt"]:after
{ content: " (Document)"; }
a[href$=".numbers"]:after, a[href$=".xls"]:after, a[href$=".xlsx"]:after,
a[href$=".ods"]:after { content: " (Spreadsheet)"; }
a[href$=".key"]:after, a[href$=".ppt"]:after, a[href$=".pptx"]:after,
a[href$=".odp"]:after { content: " (Presentation)"; }
a[href$=".woff"]:after, a[href$=".woff2"]:after, a[href$=".eot"]:after,
a[href$=".otf"]:after, a[href$=".ttf"]:after { content: " (Typeface)"; }

Hide Content
Next, we can hide and show content. This is important for saving ink
and paper, which is critical for the eco-friendly among you, and for
saving your visitors money. You'll want to use this on any adverts,
navigation menus, dynamic content or anything else that can't be
used or interacted with on a piece of paper. Remember that we're
dealing with a printed file, so clicking will have no effect.

.hide { display: none; }

.show { display: initial; visibility: initial; }

Cover Page
The next CSS class is pretty useful if you want to add a cover image or
page to your printed documents. Just include it in the final element.

.cover { page-break-after: always; }

Page Break
Next, if you would like to insert a page break, you can include the
below class in your document within the element you want it to
appear before. This will help you avoid overflowing paragraphs.

.page-break { page-break-before: always; }

Page of 215 275

Dark Paper
One feature that not many print frameworks cover or consider is the
case for if people use paper colors other than white, which is a real
misstep. So, I include the below attribute selector that you can utilize
on the HTML body (data-paper="dark") to invert paper colors.

html[data-paper=dark] body, html[data-paper=dark] del,
html[data-paper=dark] hr, html[data-paper=dark] mark, html[data-
paper=dark] s { background: initial; color: #ffffff; }
html[data-paper=dark] hr { background-color: #ffffff; color: #ffffff;
height: 2px; }
html[data-paper=dark] blockquote, html[data-paper=dark] code,
html[data-paper=dark] hr, html[data-paper=dark] kbd, html[data-
paper=dark] pre { border: 0; }
html[data-paper=dark] abbr, html[data-paper=dark] acronym,
html[data-paper=dark] table, html[data-paper=dark] td, html[data-
paper=dark] th { border-bottom-color: #ffffff; }
html[data-paper=dark] aside { border-left-color: #ffffff; }Color
Matching

Another useful feature you can add is color matching, so that if you
wish to have accurate visuals when you print this CSS will ensure that
the printer doesn't simply "best guess" and produces better results.

html[data-color=exact] body { print-color-adjust: exact; }

Page of 216 275

Filter Effects
One of the great things about CSS3 is you can do some interesting
effects on images. They may not be Instagram level, but they'll do in a
pinch for basic level filtering. The classes below should work well.

.blur { filter: blur(10px); -webkit-filter: blur(10px); }

.brightness { filter: brightness(100%); -webkit-filter:
brightness(100%); }
.contrast { filter: contrast(100%); -webkit-filter: contrast(100%); }
.hue-90 { filter: hue-rotate(90deg); -webkit-filter: hue-
rotate(90deg); }
.hue-180 { filter: hue-rotate(180deg); -webkit-filter: hue-
rotate(180deg); }
.hue-270 { filter: hue-rotate(270deg); -webkit-filter: hue-
rotate(270deg); }
.invert { filter: invert(100%); -webkit-filter: invert(100%); }
.monochrome { filter: grayscale(100%); -webkit-filter:
grayscale(100%); }
.saturate { filter: saturate(100%); -webkit-filter: saturate(100%); }
.sepia { filter: sepia(100%); -webkit-filter: sepia(100%); }

Page of 217 275

Image Print
Next, there are attributes for data-img="full-page" to scale an image to
the full page of a piece of paper, data-img="gallery" to show a list of
only images on the paper, and data-img="individual" to show a single
image on the paper at its original size. You attach the attribute to a
canvas, img, or svg element for it to work it's magic on a page.

html[data-img] address, html[data-img] blockquote, html[data-
img] details, html[data-img] dl, html[data-img] figcaption,
html[data-img] h1, html[data-img] h2, html[data-img] h3, html[data-
img] h4, html[data-img] h5, html[data-img] h6, html[data-img] p,
html[data-img] hr, html[data-img] map, html[data-img] map + img,
html[data-img] ol, html[data-img] pre, html[data-img] ruby,
html[data-img] table, html[data-img] ul, html:after { display: none; }
.full-page { display: block !important; height: 100vh; max-width:
initial; width: 100vw; }
html[data-img=full-page] canvas, html[data-img=full-page] img,
html[data-img=full-page] svg { display: none; }
html[data-img] figure, .full-page { margin: 0; }
html[data-img=full-page] { padding: 0; }
html[data-img=gallery] { padding: 0.5em 1em; }
html[data-img=gallery] canvas, html[data-img=gallery] img,
html[data-img=gallery] svg { float: left; margin: 0; }
html[data-img=individual] { align-items: center; display: flex; height:
100vh; justify-content: center; }
.individual { display: block !important; }
html[data-img=individual] canvas, html[data-img=individual] img,
html[data-img=individual] svg { display: none; }
html[data-img=individual], html[data-img=individual] canvas,
html[data-img=individual] img, html[data-img=individual] svg
{ margin: 0; padding: 0; }

Page of 218 275

Paper Size
Additionally, we can set the paper size. This requires us to put the
below within the @media print, like with the rest of the above code.

.paper-size { box-sizing: border-box; margin: 0; overflow: hidden;
padding: 0; page-break-after: always; position: relative; }

We also need to add support for a data-paper attribute, and it's many
possible values within the HTML element (using the orientation media
query). Below, I've included basic support for 10 basic paper sizes!

@media (orientation: portrait) {
html[data-paper=ledger] .paper-size { height: 17in; width: 11in; }
html[data-paper=legal] .paper-size { height: 14in; width: 8.5in; }
html[data-paper=letter] .paper-size { height: 11in; width: 8.5in; }
html[data-paper=A3] .paper-size { height: 420mm; width:
297mm; }
html[data-paper=A4] .paper-size { height: 297mm; width:
210mm; }
html[data-paper=A5] .paper-size { height: 210mm; width:
148mm; }
html[data-paper=JIS-B4] .paper-size { height: 364mm; width:
257mm; }
html[data-paper=B4] .paper-size { height: 353mm; width:
250mm; }
html[data-paper=JIS-B5] .paper-size { height: 257mm; width:
182mm; }
html[data-paper=B5] .paper-size { height: 250mm; width:
176mm; }

}
@media (orientation: landscape) {

html[data-paper=ledger] .paper-size { height: 11in; width: 17in; }
html[data-paper=legal] .paper-size { height: 8.5in; width: 14in; }
html[data-paper=letter] .paper-size { height: 8.5in; width: 11in; }
html[data-paper=A3] .paper-size { height: 297mm; width:
420mm; }

Page of 219 275

html[data-paper=A4] .paper-size { height: 210mm; width:
297mm; }
html[data-paper=A5] .paper-size { height: 148mm; width:
210mm; }
html[data-paper=JIS-B4] .paper-size { height: 257mm; width:
364mm; }
html[data-paper=B4] .paper-size { height: 250mm; width:
353mm; }
html[data-paper=JIS-B5] .paper-size { height: 182mm; width:
257mm; }
html[data-paper=B5] .paper-size { height: 176mm; width:
250mm; }

}

Multi-Column Layout
Next, for visitors browsing the website in landscape, we will also
include support for multi-column layouts using the data-col attribute
with two, three, and four as possible values for content overflow.

@media (orientation: landscape) {
html[data-col=two] .column { -webkit-column-count: 2; -moz-
column-count: 2; column-count: 2; }
html[data-col=three] .column { -webkit-column-count: 3; -moz-
column-count: 3; column-count: 3; }
html[data-col=four] .column { -webkit-column-count: 4; -moz-
column-count: 4; column-count: 4; }

}

Page of 220 275

Color Handling
Finally, we can round off the chapter by adding in true color handling
and a monochrome CSS helper, which will grey-style images to
match a printed output. While you don't need to include all these
optional pieces of code within your CSS syntax, hopefully some of
these will provide you with some ideas to improve the overall print
experience.

@media print and (color) {
* { print-color-adjust: exact; -webkit-print-color-adjust: exact; }

}
@media print and (monochrome) {

canvas, figure, img, picture, svg { filter: grayscale(100%);
-webkit-filter: grayscale(100%); }
mark { background-color: #D3D3D3 !important; print-color-
adjust: exact; -webkit-print-color-adjust: exact; }

}

Reference

For further on creating print stylesheets, I recommend
reading https://alistapart.com/article/goingtoprint/
and https://www.smashingmagazine.com/2018/05/
print-stylesheets-in-2018/ and https://www.matuzo.at/
blog/i-totally-forgot-about-print-style-sheets/

Page of 221 275

https://alistapart.com/article/goingtoprint/
https://www.smashingmagazine.com/2018/05/print-stylesheets-in-2018/
https://www.matuzo.at/blog/i-totally-forgot-about-print-style-sheets/

Chapter 24:
Keep your development team up-to-date
Create a README for developers working on production files, or
projects, critical to the website.

Page of 222 275

README
Whether you're a regular on GitHub or a code hoarder who happens
to work with several other developers contributing to the same
projects (on another collaborative platform), there has never been a
more important time to ensure that anyone who is involved in the
building of a website or app can dive into a project as quickly as
possible. The README aims to be the ultimate signposting tool by
acting as a universal manual for developers who dare get involved.

Every developer has their method of creating a README file and there
is no wrong way of producing one, so I've decided to share mine.
The README is one of those files that encourages coders to work
toward similar standards, helps reduce mistakes, and can help users
who are curious about open source work not run for the hills. The
benefit is there, even if it mostly occurs behind the scenes.

Reference

No perfect README exists, but mine is based upon this
as it's as close to a standard as one exists. https://
www.makeareadme.com/ Also checkout https://
github.com/hackergrrl/art-of-readme

Page of 223 275

https://www.makeareadme.com/
https://github.com/hackergrrl/art-of-readme

Generation
So let's get started by creating a README file. It has no extension and
should be placed on your GitHub (or kept where your versioning
occurs. Don't just FTP it to your server and leave it for the public, as
they won't be able to use it. Within the file, you will want to add some
information about what your website or application. You should be as
detailed as you can be, giving steps, images, tables and such as is
required. To begin our file, we should provide a title for our README.

README - <Text>

Overview
Next we need an overview section. Within the overview, you should
give a quick rundown of what the project is about. I usually provide
things like a project name (including codenames, versions, and URL's),
the background (history, timeline, version releases, timeline) of the
project, a detailed description (purpose, can/can't do, aims), and any
badges (code maintenance, awards, certification) that are related.

Overview:
Name: <Text>
Background: <Text>
Description: <Text>
Badges: <List>

Usage
Next, you'll want a usage section. It'll serve as the basis for a project's
documentation. I provide a list of features (guide, workflow, code, CLI
tools), a FileMap (repo structure, syntax used, apps required), multiple
visuals (screenshots, videos, podcasts, etc), and a reading list (useful
links, books, Q&A's, docs) to explain how to include the project.

Usage:
Features: <List>
FileMap: <List>
Visuals: <Images>
Reading: <List>

Page of 224 275

Installation
Next is something no guide can be without, an installation section.
This helps the user get the project running. I usually give download
(import, clone, and sign-up) instructions, requirements (browser,
application, device) to use the project, and dependancies (libraries or
frameworks) needed for the project to be utilized on a website.

Installation:
Download: <Url>
Requirements: <List>
Dependancies: <List>

Support
Finally, we have the support section. This works independently of the
documentation by giving developers further advice about a project.
You could offer details about the project's status (activity, live/dead,
deprecated), details on contributing (links, how-to, issues, translations,
discussions), a legal file (license, terms, privacy, copyright), project
acknowledgements (contributors, sponsors, etc), the date last
updated (major, minor & revision) and authors (project, website, etc).

Support:
Status: <Text>
Contributing: <Url>
License: <Url>
Acknowledgments: <List>
Updated: <Date>
Authors: <List>

Summary
Ensuring that visitors to your codebase feel comfortable without
having to reach out for support is critical in being able to collaborate.
By having a README file, you can provide answers to some basic
questions about the project and direct people to further info if further
reading is required. It should reduce the amount of technical support
requests you're handling and let you code collaboratively.

Page of 225 275

Chapter 25:
Setting the default rules for search engines
Generate a robots text file using the extended standard to ensure
search engines can find all your pages easily.

Page of 226 275

robots.txt
Just like many of the text files we've covered in previous chapters, the
robots file serves a unique and important purpose. What you may not
know (if you're a young developer) is that the robot’s file is one of the
oldest web standards (dating back to the early 90s). The aim of the
robots exclusion standard is to tell search engines which pages you
would rather not appear in search results pages. It's really that simple.

The standard has evolved from the original specification (which hasn't
changed) to an extended standard, that has been partially adopted
and expanded upon by search engines via the tiny but extremely
useful text file. It's therefore highly recommended that every site has
one of these files to control how search engines index their content.

Page of 227 275

Generation
So how do we create this useful file? Simple. Create a plaintext file
called robots.txt and place it in the base directory of your website.
Just like a favicon.ico, your robots file must be located in the base of
your website to ensure that when search engines go looking for the
rules, they are in the default location. Be aware that, like any file, any
tool browsing your site can choose to ignore your robots.txt ruleset.

Comments
As with many text files, you can include comments in your robots file
by preceding your text with a hash (#) character. You can do this on a
new line (perhaps giving your file a title) or directly after a property -
value pair. Below, I've provided a basic example of a comment.

This is a comment

Robots Standard
Next, you'll need to put some content within the robots file for search
engines to follow. There are only a few properties you can use, as the
specification itself (that Google understands) is small. First up we have
the User-agent property which, unless you have a reason to select
something else, I'd keep it to the below value. It essentially lets you
decide which search engines the robot rules below it will apply too.

User-agent: *

The next rule we can use the Disallow property, which tells the search
engine to ignore the chosen folder. If User-agent is star valued, then it
applies to all robots, if not, you can pick a search engine for it to apply
too. The Disallow property shouldn't be used in-place of password
protection either, as while it won't show in search results, visitors
could potentially find the page through the robots.txt file instead.

Disallow: /cgi-bin/

Page of 228 275

Along with Disallow, you can specify a folder that must be included
within search engine results (where no direct path to the document
has been provided within the website or apps hierarchy) using the
Allow property. You can even set Allow paths within Disallow paths.

Allow: /.well-known/

Finally, if your website has a sitemap which complies with the sitemap
specification (See Chapter 28), use the below opportunity to link to it
within this file so that search engines can index your pages whilst they
are working out what documents should be left out of search results.

Sitemap: https://example.com/sitemap.xml

Robots Non-Standard
In addition to the standard robots properties, there are a few others
which the extended standard offers, which have limited but potential
support among search engines. Whilst I don't tend to use them, their
use shouldn't have any impact upon your website or app if they aren't
supported by a particular spider or robot which stumbles upon them.

Reference
To learn more about what robots properties Google
has adopted, read https://developers.google.com/
search/docs/advanced/robots/robots_txt

Property Description

Comment Message to send to the search engine.

Request-rate The rate a search engine should use by default.

Robot-version Follows User-agent. Provides one X.X version.

Visit-time Robot can only visit between given times.

Page of 229 275

https://developers.google.com/search/docs/advanced/robots/robots_txt

And that's all there is to the robots.txt standard. It's a basic
specification which has an important role to play in the visibility of
your website or app. It will definitely impact your website's search
engine optimization, and it will likely also impact content visibility. As it
takes so little time to implement, there is no reason why it shouldn't be
used on every website or web application that you produce.

Reference
To learn more about the extended specification, read
http://www.conman.org/people/spc/robots2.html

Reference
To learn more about robots.txt, read the specification at
http://www.robotstxt.org/robotstxt.html

Page of 230 275

http://www.conman.org/people/spc/robots2.html
http://www.robotstxt.org/robotstxt.html

Chapter 26:
Declare security protocols and contacts
Show you mean business by giving your security related website
details, and (if required) a do not track policy.

Page of 231 275

security.txt
Creating a flawless website is an ongoing process, and along with the
spelling errors and visual bugs your website is likely to encounter
throughout development, more serious issues such as security flaws
or vulnerabilities are a coder's worst nightmare. Not only could they
leave you in a legal minefield, they could expose your customers'
personal information to fraudsters. Avoiding such issues is paramount.

The aim of a security file isn't to prevent such attacks as dealing with
issues like cross-site scripting, hacking, malware and such will be for
another book to handle as there are too many mechanisms to cover.

What this chapter and file covers is a simple document that will help
security researchers and individuals with a keen eye for problems to
direct those faults to the right individuals on your team. As this file is a
proposed standard, it's worth adopting within your workflow.

Page of 232 275

Policy Creation
This file is intended to work in association with your existing security
workflow, so with this in mind, let's build one to add to your site for
visitors who might seek the file out if they discover a flaw. To begin, as
with any plaintext file, you'll want to create a security.txt file, though in
this case, you won't place it within the base directory. Instead, its
recommended placement is within the .well-known asset directory.

Comments
As with the majority of text files, you can include comments in your
security file by preceding your text with a hash (#) character. As the
file is pretty short, there's unlikely to be many uses for them, thought.

This is a comment

Acknowledgments
This should provide a link to a page where security researchers are
given credit for their work uncovering any issues on your projects.
Remember not to give too much information about the vulnerability
to prevent further attacks from occurring if similar issues exist or are
uncovered in other regions of your codebase in the future.

Acknowledgments: https://example.com/security.html

Canonical
This should point to the URL of the security.txt file. It's self-referential
and exists so that digital signatures can verify the file's contents easily.
You may also find that the link is used as a quick reference for users.

Canonical: https://example.com/.well-known/security.txt

Reference
To learn more about the security.txt specification and
generate a document, visit https://securitytxt.org/

Page of 233 275

https://securitytxt.org/

Contact
This property must be included within the file. You may choose to use
a link, a telephone number, an email address, a social media address
or some other method of contact. The critical thing is that some easy
form of contact and reporting of security issues is available at the URL.

Contact: https://example.com/contact.html

Encryption
Whether you decide to provide a fingerprint (hash) or a URL to a key,
it's important that when signing a security.txt file, you must include this
property to ensure that the credentials held within can be verified.

Encryption: https://example.com/pgp-key.txt

Expires
This mandatory property should contain the date and time of which
the security information will become stale (and will need to be next
reviewed). You should follow the datetime format below, and it's also
recommended by the specification that the value be less than a year.

Expires: Thu, 31 Dec 2021 18:37:07 -0800

Hiring
If you have any security related jobs going on your site, a great way
to let researchers know about them is to advertise them where they
will be looking. Your security.txt file has a property for just such a URL.

Hiring: https://example.com/jobs.html

Policy
Every organization is different and their approach to dealing with any
security issues will vary. If you want to declare how you handle bugs,
glitches, and vulnerabilities on your projects, provide a Policy link in
your file. Try to be as detailed as possible regarding submissions.

Policy: https://example.com/policy.html

Page of 234 275

Preferred Languages
This comma separated property is pretty straightforward as it allows
you to include two digit languages which you allow security and bug
reports to be submitted in. This can be helpful if you only understand
English or if you want your reports in a language other than English.

Preferred-Languages: en

Digital Signature
It is recommended that a security.txt file is digitally signed using
OpenPGP signatures, include the canonical property, and have a link
to the PGP key using the Encryption property to ensure that the
signature is valid. Ensuring that the file is signed correctly is the
researcher's responsibility, so make sure you or your team verify files.

Page of 235 275

I have provided an example of a signed document in action (without
the signature, as one needs to be generated). You'll notice the PGP
tags with a Hash property (disclosing the hash type), and a Version
property within the signature. Open Source, Free and paid PGP
software can be found on all platforms to create such signatures.

----BEGIN PGP SIGNED MESSAGE----
Hash: SHA256
Acknowledgments: https://example.com/security.html
Canonical: https://example.com/.well-known/security.txt
Contact: https://example.com/contact.html
Encryption: https://example.com/pgp-key.txt
Expires: Thu, 31 Dec 2021 18:37:07 -0800
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.2
[signature]
-----END PGP SIGNATURE----

dnt-policy.txt
Another file which should be placed in the .well-known directory
which affects the visitors' security, and thus it's worth talking about
quickly here, is the little known about dnt-policy.txt file. The idea
behind the file is a three part commitment (terms of use agreement)
to not track your visitors and respect their privacy. The basics would
be no analytics, no cookies, no forms requesting any personal data
(etc), but beyond that, we also need to disable server logging.

Page of 236 275

This proposal by the Electronic Frontier Foundation (EFF) is quite an
ask of webmasters who have spent years gouging visitors for data,
but if you want to commit to promoting an ethical, data snooping free
experience for visitors, you'll need to do three things to make the
most of this tiny text file (this is one for real privacy evangelists).

Reference

To read more about the DNT policy from the EFF, visit
https://www.eff.org/dnt-policy or to include the policy
in your site, use: https://raw.githubusercontent.com/
EFForg/dnt-policy/master/dnt-policy-1.0.txt

Page of 237 275

https://www.eff.org/dnt-policy
https://raw.githubusercontent.com/EFForg/dnt-policy/master/dnt-policy-1.0.txt

Creating The File
First is the obvious, if you collect user data (outside the necessary) -
stop. Disable all that terrible data hungry script nonsense. Secondly,
you'll need to add some code into your server to stop it sucking data
by default. On Apache, I've provided the code you'll require below,
but if you use another server (like NginX) you can look to your server's
documentation for advice on how to turn off session and IP logging.

SetEnvIfNoCase DNT 1 DO_NOT_TRACK
CustomLog ${APACHE_LOG_DIR}/access.log combined env=!
DO_NOT_TRACK

Location: /etc/apache2/sites-available/example.com.conf

The above code should replace the below:

CustomLog ${APACHE_LOG_DIR}/access.log combined

Finally, you will want to include a do not track policy. Create your dnt-
policy.txt document and place it within the .well-known directory (if
you haven't already), and within it include the full policy by the EFF to
explain your commitment to never track visitors. This file isn't required
to produce a security.txt file, it's just another way you can add
something to your site to underpin your security intentions.

Page of 238 275

Chapter 27:
Making your PWA image conscious
Ensure your PWA is complete. Add this manifest, and a browserconfig
for old IE users to add tile support.

Page of 239 275

site.webmanifest
We've already examined the benefits of building favicons and the
various formats you needed to provide to ensure that every browser
and device that might come across them could utilize them. We're
now going to look at progressive web applications and how a couple
of tiny files can make use of the images you have created and put
them to use on a visitors' device's home screen or browser tile.

First up, let's look at the newest and most widely used of the files. You
may have heard of the file referred to as manifest.json, but as I like to
follow the specifications, I prefer to use the recommended name of
site.webmanifest - though whichever name you choose, it does the
same thing. This JSON file will provide some icons and information
about your website regarding how mobile devices should display it.

Page of 240 275

Creating A Manifest
To create the webmanifest, you should place the document in the
base directory of your website, as there is a chance that mobile
browsers will automatically seek the file if a visitor tries to add your
website to their home screen. Within the JSON file you will need to
add several property value pairs and an array of icons, I've provided a
code sample below as a boilerplate plus a table of all the potential
property value pairs which you can use to guide your decisions.

{
"short_name": "Name",
"name": "Name - Details",
"description": "Description.",
"start_url": "/",
"icons": [

{
"src": "/images/droidx192.png",
"sizes": "192x192",
"type": "image/png"

},
{

"src": "/images/droidx512.png",
"sizes": "512x512",
"type": "image/png"

}
],
"theme_color": "#ffffff",
"background_color": "#ffffff",
"display": "standalone"

}

Page of 241 275

Property Description

background_color Visible on the splash screen on app launch.

description The purpose of your web application.

display
fullscreen (no-UI), standalone (app), minimal-
ui (basic controls) or browser (normal).

display_override Fallback if a browser doesn't support display.

icons
Contains src (url), sizes (pixels), and type
(mime). 512×512 & 192×192 must be provided.

name Long title of the web app for other uses.

related_applications Contains platform & url. Identifies useful apps.

scope URL's considered to be part of your app.

screenshots
Contains src, sizes, and type. Images of your
app (they should have the same aspect ratio
and size from 320px to 3840px).

short_name Short title of the web app for limited space.

shortcuts
Array of (at least) name / url pairs for menu
items which only trigger within a PWA.

start_url Directly opens the app, not a landing page.

theme_color The color you want the UI to be for your app.

Reference
You will soon be able to make your PWA integrate
better with the OS by removing the window chrome:
https://alistapart.com/article/breaking-out-of-the-box/

Page of 242 275

https://alistapart.com/article/breaking-out-of-the-box/

Implementation
Once you have created your manifest file, you'll need to link to the file
within the head of your HTML to ensure that it'll be picked up by all
supporting browsers on mobile and desktop using the below code.

<link rel="manifest" href="site.webmanifest">

browserconfig.xml
Now we have to talk about Internet Explorer again (sigh). The Browser
Configuration file (BrowserConfig) was created by Microsoft as their
spin on the manifest format for IE11. Rather than being built using clean
JSON, it's created using strict XML, and rather than being used to
show icons across a variety of handheld devices, this particular file
only shows tiled images on one browser, you guessed it, their own.

Reference

For a comprehensive guide to app manifest creation,
read https://www.w3.org/TR/appmanifest/ and
https://web.dev/add-manifest/ or https://
developer.mozilla.org/en-US/docs/Web/Manifest

Page of 243 275

https://www.w3.org/TR/appmanifest/
https://web.dev/add-manifest/
https://developer.mozilla.org/en-US/docs/Web/Manifest

It's fair to say that usage of IE11 has dropped like with every other
version of Internet Explorer, so unless you have an IE fanbase out
there, you might decide to give this file a miss as it's near deprecation.
However, as it's the last version of Internet Explorer and there are still a
number of users clinging on to old technology, and you might find
some fringe use-cases for it (plus it's pretty easy to implement), it
might be worth integrating anyway for compatibility’s sake.

Adding Tiles
To keep things simple (as this is only for Internet Explorer users), you'll
want to start by creating a browserconfig.xml and putting it in the
base directory of your website. Every XML file has a doctype, so you
will want to provide one, below this you'll find a browserconfig,
msapplication and tile element (stacked). The elements of note are
the TileColor which acts as the background transparency color, and
the four URLs which cover IE's many tile sizes within IE and Windows.

<?xml version="1.0" encoding="utf-8"?>
<browserconfig>

<msapplication>
<tile>

<square70x70logo src="images/small.png"/>
<square150x150logo src="images/medium.png"/>
<wide310x150logo src="images/wide.png"/>
<square310x310logo src="images/large.png"/>
<TileColor>#ffffff</TileColor>

</tile>
</msapplication>

</browserconfig>

Reference

For a comprehensive guide to browser configuration
files, the specification is at https://docs.microsoft.com/
en-us/previous-versions/windows/internet-explorer/
ie-developer/platform-apis/dn320426(v=vs.85)

Page of 244 275

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/dn320426(v=vs.85)

Other Features
As a matter of personal preference, I usually only tend to include the
square150x150logo tag alongside the TileColor element as the other
square elements will scale the other image to fit, making the middle
image a nice compromise of both quality and performance.

Within the msapplication element there are a couple of other things
that browserconfig can do, mainly setting badge and notification
reminders within Internet Explorer - though I'd argue that it's bad UX
as popups and toasts will irritate visitors and diminish their good will.

<badge>
<polling-uri src="badge.xml"/>
<frequency>30</frequency>

</badge>
<notification>

<polling-uri src="1.xml"/>
<polling-uri2 src="2.xml"/>
<polling-uri3 src="3.xml"/>
<polling-uri4 src="4.xml"/>
<polling-uri5 src="5.xml"/>
<frequency>30</frequency>
<cycle>1</cycle>

</notification>

Implementation
Because I consider them bad practice in general, I won't go much
further into how they operate, though you'll notice that they require
additional markup in XML. For details, check the browserconfig.xml
specification, as it provides boilerplates and live examples to use.
With all these accounted for, there's little else to add, except to put a
reference to the document in your HTML head (next to the manifest).

<meta name="msapplication-config"
content="browserconfig.xml">

Page of 245 275

Chapter 28:
Mapping the index of your entire website
Generate a complete inventory of your pages to ensure that search
engines can correctly index your site.

Page of 246 275

sitemap.xml
In Chapter 25, we covered the search engine benefits of having the
robots.txt file on your website. We'll now cover the companion file for
boosting the search value of your content - the sitemap. Don't be
fooled by its tiny appearance, as it will declare to a search engine
exactly which pages of your content you'll want to be indexed and
how frequently you'd like it to be re-indexed (based on exactly how
often you update it). Every site should have one of these included.

Reference
For a comprehensive guide to XML sitemaps, read the
spec at https://www.sitemaps.org/protocol.html

Page of 247 275

https://www.sitemaps.org/protocol.html

Creating The Map
Before we create our XML sitemap, it's important to make sure the file
will be referenced correctly. If you've created a robots.txt file, you
should have created a Sitemap link to this file (in readiness for its
creation). If you haven't, add one. If you've not made a robots.txt file,
it's time to make one, as the sitemap will not be linked anywhere else
in our documents. Search engines seek it out in the robots file.

Sitemap: https://example.com/sitemap.xml

With that out of the way, let's build the sitemap.xml file by creating a
new file in (you guessed it) the base directory of our website. Within
this file, you'll want an XML doctype declaration with urlset elements.

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

</urlset>

Elements
Within the urlset element, you'll want to provide an url tag for every
page you want to be indexed. You'll naturally need to provide a URL
of the website (using the loc tag - which is required), and there's a
few other optional elements you can use to assist search engines.

<loc>https://example.com</loc>

The lastmod element does mostly what it sounds like. It declares
when the website was last modified in an attempt to tell any search
engines reading the document that the page needs re-indexing.

<lastmod>2021-01-01</lastmod>

Next up is the changefreq element, which works similarly to the
lastmod tag, however in this case. Rather than specifying when the
document was last updated, it tells search engines that the document
is updated on a routine basis. You can set it to always, hourly, daily,
weekly, monthly, yearly or never update - though please note that
Google will only consider this request, it can choose to ignore it.

Page of 248 275

<changefreq>monthly</changefreq>

Again, another useful property, the priority element, has a value which
ranges from 0.0 to 1.0 (0.5 is the average) that will give search engines
an idea of how a page ranks in importance against other pages on
your site. Note that it won't give you a better placement in results, it
lets them know what web pages you value the most.

<priority>0.5</priority>

Multi-Maps
Finally, If you want to merge multiple sitemaps together, you can do
so provided the final file is no larger than 50mb and contains no more
than 50,000 URLs. The code is slightly different, using a sitemapindex
element instead of urlset. Within sitemapindex you'll have a sitemap
tag for each sitemap and a loc element (for the URL) plus a lastmod
element which should contain the date the document (each sitemap)
was last modified. You can gzip such files to optimize them too.

<?xml version="1.0" encoding="UTF-8"?>
<sitemapindex xmlns="http://www.sitemaps.org/schemas/
sitemap/0.9">

<sitemap>
<loc>https://example.com/sitemap1.xml.gz</loc>
<lastmod>2021-10-01T18:23:17+00:00</lastmod>

</sitemap>
<sitemap>

<loc>https://example.com/sitemap2.xml.gz</loc>
<lastmod>2021-01-01</lastmod>

</sitemap>
</sitemapindex>

The sitemap is a simple file that starts off easy to put together, though
if you have countless pages on your site, you may want to manage
the entire process using a software tool (due to how time laborious it
can be). Plus, maintenance could be tricky with weeding out dead
links and redirecting old pages. Despite the challenges you may face,
in a search and social world, it's a critical document to have.

Page of 249 275

Chapter 29:
Get a solid backbone for your web layout
Every site begins with some generic styles, these are mine. Generate
a DRY stylesheet for your project.

Page of 250 275

style.css
We've already paid homage to CSS within the Print chapter, ensuring
that you have a stylesheet available for when your visitors want to
have a PDF or paper copy of your documents. Next, we're going to
create a basic stylesheet for your document to ensure that when you
start coding, your styles will match as closely as possible across all
browsers. Yes, what I'm talking about is a CSS reset, something which
is optional, but many web developers often find helpful.

Page of 251 275

Since web browsers have come on a long way from the old days of
Internet Explorer and the days of normalize.css, the need for a reset
has really diminished by quite a level. Some developers choose not to
work with a base stylesheet at all; however, I find it useful to cover as
many use-cases as possible and as this book is all about small useful
files, I'll cover it here so that you've got one if you require it.

Within our CSS we will have a reset plus a few optional extras that you
might find useful on your development journey (I certainly keep re-
using these). We'll cover hiding and showing content safely (for
disabled users), web fonts will be included, and so will color through
the document. You should only include the styles you'll actually use.

Reset Styles
First, let's add our reset stylesheet. I've based this upon the boilerplate
provided by Andy Bell, as it's one of the cleanest and least fiddly that
exist - after all, there's no point having unnecessary bloat. Saying that,
it's not without its faults. I've added a few of the tags it was missing at
the time of print (see H5 and H6) and made some tweaks.

Reference
As with HTML, don't forget to validate your code. It's
worth ensuring that you don't have any syntax errors to
avoid display bugs https://jigsaw.w3.org/css-validator/

Reference

CSS is a constantly evolving language. To keep your
skills current, check the latest developments at https://
www.w3.org/Style/CSS/specs.en.html or https://
developer.mozilla.org/en-US/docs/Web/CSS

Page of 252 275

https://www.w3.org/Style/CSS/specs.en.html
https://developer.mozilla.org/en-US/docs/Web/CSS
https://jigsaw.w3.org/css-validator/

@media screen {
*, *::before, *::after { box-sizing: border-box; }
html {-moz-text-size-adjust: none; -webkit-text-size-adjust:
none; text-size-adjust: none;}
canvas, img, picture { display: block; max-width: 100%; }
button, input, select, textarea { font: inherit; }
body { line-height: 1.5; min-height: 100vh; text-rendering:
optimizeSpeed; }
ul[role='list'], ol[role='list'] { list-style: none; }
blockquote, body, dd, dl, figure, h1, h2, h3, h4, h5, h6, p
{ margin: 0; }
html:focus-within { scroll-behavior: smooth; }
a:not([class]), abbr:not([class]), acronym:not([class]),
ins:not([class]) { text-decoration-skip-ink: auto; }

}

Other Code
Below you'll see the additional code I like to include in every reset.
There are a number of useful things which we'll go through line by
line. First up is the ability to color the foreground and background of
selected text. Next is adding a border around quotes, keyboard
characters and any type of code (to define easier). There is also a
style for acronyms to find them better, using a dotted bottom border.

Next up, I make deleted or strikeout text grey to show that it's been
removed. I also provide a base web-safe font stack that works on all
devices for both the page and all code elements (though you can
replace these with your own typeface choices). I make captions italic
and dt tags bold for emphasis. There are classes to safely hide and
show content without affecting accessibility. And for users of the u
element, it'll show a wavy line, so they won't be confused with links.

Reference
To view the original CSS reset that this was based
upon, visit https://piccalil.li/blog/a-modern-css-reset/

Page of 253 275

https://piccalil.li/blog/a-modern-css-reset/

@media screen {
::selection { background-color: #ffffff; color: #000000; }
blockquote, code, kbd, pre { border: 1px solid grey; }
abbr[title], acronym[title] { border-bottom: 1px dotted grey; }
del, s { color: grey; }
body { font-family: font-family: -apple-system,
BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu,
Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif; }
code, kbd, pre, samp, tt, var { font-family: 'Courier New',
Courier, 'Lucida Sans Typewriter', 'Lucida Typewriter',
monospace; font-size: 0.8em; }
caption, figcaption { font-style: italic; }
dt { font-weight: bold; }
.hide { height: 1px; left: -1000px; overflow: hidden; position:
absolute; top: -1px; width: 1px; }
.show { height: auto; left: auto; overflow: auto; position: relative;
top: auto; width: auto; }
u { text-decoration-style: wavy; }

}

Conclusion
As with all CSS styles, you'll need to ensure that you add a reference
to the file within the head of your HTML file for it to load correctly. You
could choose to keep the code within the same file as your print style
sheets and media queries to reduce the HTTP request count. But the
management of a CSS file should be fine if it's well documented.

<link rel="stylesheet" href="assets/styles.css">

This code serves as a basic boilerplate, and you can do with it what
you like. You can use as much or as little as you prefer in your own
styles. Just remember that CSS is constantly evolving, and it makes
sense to keep an eye on the specifications to see what new features
you can use, ensure you know how the cascade works, and don't add
more code than you need as your code can quickly get cluttered.

Page of 254 275

Chapter 30:
Providing accessibility for web videos
Meet accessibility standards by creating subtitles. Using timestamps,
add text to speech with ease.

Page of 255 275

subtitles.vtt
Accessibility is as important on the web as it has always been. When
you work with videos, a common method of ensuring inclusivity is by
giving your visitors subtitles or captions so that any deaf or hard of
hearing visitors can still enjoy your content. Not only is accessibility a
legal requirement, but it makes sense as inclusive requirements make
up quite a sizable proportion of the population and therefore could
make up a large portion of your visitors. So, let's make some subtitles.

Using the Web Video Text Tracks Format (WebVTT) we can produce
the subtitles our visitors will require. It uses plaintext to generate the
text alternative. One thing to mention is that while you can create
subtitles manually because it relies on timing and accuracy, doing it in
your IDE or notepad can be fiddly. You may therefore want to use
some software which can help create the files for you, it's a rare
instance where tooling actually beats coding and there are apps
available on every platform to accomplish this task for you.

Page of 256 275

Including Subtitles
Whereas many other files require you to include a reference to the file
within the head of the HTML document, subtitles are different. This is
because they are attached directly to each video, so this means you
can include multiple tracks (say for different languages). You can also
provide as many VTT files as required, as you are not limited to one
per page. If you have 10 featured videos on the page, have 10 tracks.

<video height="480" width="640" controls>
<source src="videos/video.mp4" type="video/mp4">
<source src="videos/video.webm" type="video/webm">
<track kind="subtitles" src="videos/subtitles.vtt" label="English"
srclang="en">

</video>

Building Subtitles
Create your subtitles.vtt document and place it within a folder where
you plan to store all your other video assets. Within the file, we must
declare that the document is a WebVTT file by using the below
(replacing <Title> with whatever you like, perhaps something that
describes your video). This must be the first line of the document.

WEBVTT - <Title>

Reference

For a comprehensive guide to WebVTT, read the
specification at https://www.w3.org/TR/webvtt1/ and
use the guides at https://developer.mozilla.org/en-US/
docs/Web/API/WebVTT_API and http://
html5doctor.com/video-subtitling-and-webvtt/

Page of 257 275

https://www.w3.org/TR/webvtt1/
https://developer.mozilla.org/en-US/docs/Web/API/WebVTT_API
http://html5doctor.com/video-subtitling-and-webvtt/

Next we need to add some subtitles, on each first line we need to
provide an index (known as a cue identifier). Each must be unique, I
like going in numerical order of when the subtitle will appear as it's
easier. Below this, you have to add timing details (from > to) in the
format hh:mm:ss.ttt (hours, minutes, seconds, milliseconds) as it should
appear onscreen. Below the timestamp, you then write your subtitle
content text, which will overflow onto multi-lines. Easy!

1
00:00:12.340 --> 00:00:18.642
- An example of a subtitle to be shown onscreen.

Styling Subtitles
Next we're going to cover the ways you can style your subtitles as
you'll probably want to give them a few stylistic flourishes with fonts
and color, though ensure they are accessible if you change anything.
The essence of styling VTT files falls into two camps; you can either
use the older B (Bold), I (Italic), and U (Underline) elements to give
them some basic style, or (my preference), use CSS via the C element.

<c.classname>Content.</c>

Code Comments
If you want to include comments within your file (you may well want
to, as you can imagine with a long video, it could become unwieldy),
all you need to-do is include the NOTE header and place a comment
below it. As illustrated by the below, it can span multiple lines.

NOTE
Here is a comment.
And yes, it can span multiple lines.

Page of 258 275

VTT Settings
Finally, there are a few settings in the VTT file you can use on each
track that appears, so if you have a moment in a video where your
subtitle would be better placed elsewhere on the screen, it's possible
to do a bit of repositioning. Though I'd advise against this unless you
need to, as visitors will expect to find their captions and subtitles in
the same place each time (and might think your player is broken).

00:00:05.000 --> 00:00:10.000 align:start line:63% position:72%
00:00:10.000 --> 00:00:15.000 align:start line:0 position:20% size:60%
00:00:15.000 --> 00:00:20.000 align:end line:-1 vertical:rt

Setting Description

align
Declares the alignment of the text. It's affected by both
size and vertical:rl / vertical:lr values (if they are used).

line
Declares where text appears vertically, unless vertical:rl
or vertical:lr included then it specifies horizontally.

position
Declares where text appears horizontally, unless
vertical:rl or vertical:lr included then it specifies vertically.

size
Declares width of the text area, unless vertical:rl or
vertical:lr included then it specifies the height.

vertical:lr The writing direction will display left to right.

vertical:rl The writing direction will display right to left.

Page of 259 275

Summary
Don't think this is the end of the subject (or your accessibility journey).
Just as you have embedded subtitles into each of your videos, you
might want to consider providing a text-based alternative to videos
for people who can't view videos due to bandwidth constraints or
their environment. Plus, you may want to offer a signed version for
those not comfortable with subtitles too (though granted, this will
cost money). As you can see, inclusive design is not one size fits all.

Don't let that discourage you, though, anything you do to promote
your visitors' choice of interacting with a site is a great thing. Captions
and subtitles are a really useful and proven technology and this web
standard, which has been around for a while, works in every modern
browser, so it's ready for you to include within your website or app.
It's a useful format, and a great tiny file which serves a critical purpose.

Reference
The best two free editors for creating WebVTT - if you
want to avoid hand coding are https://nikse.dk/
SubtitleEdit/ and https://www.jubler.org/

Page of 260 275

https://nikse.dk/SubtitleEdit/
https://www.jubler.org/

Chapter 31:
Getting your PWA offline and app ready
Generate a basic service worker to get your progressive web
application up and running using this simple tool.

Page of 261 275

sw.js
JavaScript is a wonderfully flexible language, but it's also a terribly
tricky one for web developers starting out to get to grips with. In the
olden days of the web, the only JS anyone had to worry about was a
bit of interactivity here and there. Now, we're using it to build fully
fledged web apps, and expect them to work from the first click of a
users' home-screen. It's become an all-powerful workhorse.

It's with this in mind that I want to introduce you to a feature of
JavaScript that progressive web applications can take advantage of,
called the Service Worker. A powerful little file that helps your app run
and handle network requests in the background. This allows it to-do
some pretty cool stuff that native apps can handle like working offline
easily. There isn't a specific way you have to build a service worker
because you can pick and choose features like offline pages, function
offline, pro caching, and even background sync.

Building Assets
So let's begin creating our ServiceWorker. It's loosely built upon a
number of other existing models, and essentially, it will pre-cache any
filename you list to allow the file to work offline. Additionally, it will
clean up the cached item if the file is updated, and it will help the
browser correctly handle the caching process. It won't, however,
version your caches, nor will it cache-bust your requests, nor refresh
or clean out entries in the runtime cache. Sounds good? Let's go!

Reference
For a more detailed guide to Service Workers and how
to code them, read https://developers.google.com/
web/fundamentals/primers/service-workers

Page of 262 275

https://developers.google.com/web/fundamentals/primers/service-workers

You'll want to create a sw.js file and place it in the base directory of
your website. It's mandatory that you should do this. Within the file
you'll want to start by providing a cacheName value of the project's
name and, if it's not the first version of the project, a version number
to go with it - as this first block of code adds the event listener for the
document. You will also want to list all of your assets in the array.

var cacheName = "project-cache";
self.addEventListener("install", function(evt) {

evt.waitUntil(precache());
});
function precache() {

return caches.open(cacheName).then(function (cache) {
return cache.addAll([

"/index.html",
"/error.html",
"/humans.txt",
"/.well-known/security.txt",
"/site.webmanifest",
"/assets/style.css",
"/assets/script.js",
"/apple-touch-icon.png",
"/images/banner.png",
"/images/x192.png",
"/images/x512.png",
"/images/icon.svg",
"/favicon.ico",
"/sw.js",

]);
});

}

Page of 263 275

Creating The Cache
Next we need to include the code that will precache all the sites
resources, clean up all the old caches, and populate the result with
the results. It sounds complex and a little like disjointed, but I assure
you that it does the job correctly. You'll want to include the below:

self.addEventListener("fetch", function(evt) {
evt.respondWith(fromCache(evt.request));
evt.waitUntil(update(evt.request));

});
function fromCache(request) {

return caches.open(cacheName).then(function (cache) {
return cache.match(request).then(function (matching) {

return matching || Promise.reject("no-match");
});

});
}
function update(request) {

return caches.open(cacheName).then(function (cache) {
return fetch(request).then(function (response) {

return cache.put(request, response);
});

});
}

Reference
If you want some more examples of Service Workers
that you can implement, visit https://serviceworke.rs/
or use https://www.pwabuilder.com/serviceworker

Page of 264 275

https://serviceworke.rs/
https://www.pwabuilder.com/serviceworker

Implementation
To add the ServiceWorker into your application, you'll want to include
the below into the base of your body HTML element. You should be
aware that CORS can block web apps from running locally. If your site
meets the criteria for a progressive web application (HTTPS, etc) then
it will work perfectly; otherwise you might find that the file won't load.

<script>
"use strict";
if ('serviceWorker' in navigator) {

navigator.serviceWorker.register('/sw.js');
}

</script>

If you are building a web app, especially one that will allow users to
install it to their home screen like a native app, you will definitely want
to have a ServiceWorker on your product. The compatibility of
features in SW files differs wildly between different web browsers, as
they are a relatively new piece of technology (Safari being the worst
offender - so iOS users get a raw deal). If you're just building static
pages, you can give this chapter a skip, as you may not need one.

Page of 265 275

Chapter 32:
Never miss a potential contacts details
Add your business or personal details into a downloadable address
book file, supported on desktop and mobile.

Page of 266 275

vcard.vcf
You've made it to the final chapter, congratulations! We've covered a
lot of tiny, useful files, and this last one is no exception to that rule. The
vCard is a digital business card which, upon download (and running)
integrates with the users' default address book. The format of this file
is very similar to that of the event.ics format. If you run any kind of
business and want users to remember you, include this on your site.

Page of 267 275

Your business might have several contact details (take for example
employees) which customers can take advantage of, or you may have
the physical premises where clients can choose to visit you. By having
a digital business card, you allow users to take your details at a click
and have them available from whatever device they have their
contacts synced too. vCards are compatible with every desktop and
mobile platform, so you can imagine how useful this is on a phone.

Regarding the properties, as only a few are compatible with popular
apps (such as iOS, Mac, Google Calendar & Outlook), we will place
most of our focus on the elements that have gained widespread
implementation. For other outstanding properties and values, they will
be noted but may not offer much value, though it won't hurt if they
are included. For device-specific properties, they'll be listed too.

Card Creation
So let's begin by creating a vCard.vcf file and placing it wherever you
like as there is no set place where you need to put your digital
business cards. It's also worth noting that just like with the calendar
events, you can build as many as you'd like. Next you'll need to put
the opening and closing tags with a reference to your business and
product in PRODID, as this acts as the generator information for the
vCard document (all of these components are required in the file).

BEGIN:VCARD
VERSION:3.0
PRODID:-//Business//Product//EN

END:VCARD

Reference

For a comprehensive guide to using the vCard syntax,
check out the specification at https://tools.ietf.org/
html/rfc6350 and this Apple article about size limits
https://support.apple.com/en-us/HT202158

Page of 268 275

https://tools.ietf.org/html/rfc6350
https://support.apple.com/en-us/HT202158

Name Properties
So now we have to populate some content between the VCARD
elements. First up are the name properties. You have N (name) which
lists every name value type in a specific order. ORG, which lets you
name your brand. And there are some optional properties that Apple
doesn't support, you can include these if you choose as they won't
affect compatibility (iOS ignores them) or you cannot use them.

These less compatible properties include FN (full name) where you
can format your name how you decide. ORG where you can list a
business name. NICKNAME, where you can list your handle. GENDER
where you can provide a value of M (male), F (female), or O (other).
TITLE, where you can provide any job title you hold. And ROLE, where
you can specify what task you perform in your current occupation.

N:Last;First;Middle;Prefix;Suffix
ORG:Company
FN:Full Name
GENDER:O
NICKNAME:Nick
ROLE:Role
TITLE:Job

Date Properties
Next up are the date properties, there are only two of them. The first
is the BDAY (birthday) which will actually integrate into calendars (on
compatible devices). Aside from that, you have an ANNIVERSARY item
where you can provide a date (though support for this is pretty low).

BDAY:1999-01-01
ANNIVERSARY:19950101

Page of 269 275

Phone Properties
Next up, we have the properties for allowing people to call you on
the phone (if you want them too). This is a really useful feature if you
have a technical support line and visitors import the card into their
smartphone. The formatting of the first two are defined by a type
attribute which can have a value of IPHONE, HOME or WORK along
with the number. You'll notice an IMPP protocol property, which can
be used for connecting with Skype users via their profile identity.

TEL;type=IPHONE;type=CELL;type=VOICE;type=pref:01234 567890
TEL;type=HOME;type=VOICE:09876 543210
IMPP;X-SERVICE-TYPE=Skype;type=WORK;type=pref:skype:ProfileID

Email Properties
Most sites have an email account for technical support or sales, and
this section allows you to include as many as you are likely to require.
With the type attribute, you can have a value of HOME, WORK (or
using the third and fourth lines special formatting - OTHER). You can
also set an email as your preferred account using ";type=pref".

EMAIL;type=INTERNET;type=HOME;type=pref:email@example.com
EMAIL;type=INTERNET;type=WORK:email@example.com
item1.EMAIL;type=INTERNET:email@example.com
item1.X-ABLabel:_$!<Other>!$_

Social Properties
In this next section, we're going to cover ways visitors can contact
you on the web. The first two lines of the below cover adding your
homepage to your contact card (which you'll want to include). Below
that you'll find social media profile references for Twitter, Facebook,
and LinkedIn, which are the big three that iOS and Android support.
There is also an option for GameCenter for iOS users to connect too.

Page of 270 275

item3.URL;type=pref:https://example.com
item3.X-ABLabel:_$!<HomePage>!$_
X-SOCIALPROFILE;type=twitter:http://twitter.com/ProfileID
X-SOCIALPROFILE;type=facebook:http://facebook.com/ProfileID
X-SOCIALPROFILE;type=uk.linkedin.com;x-user=ProfileID:http://
uk.linkedin.com/in/ProfileID
X-SOCIALPROFILE;type=gamecenter;x-
user=ProfileID:0000000000:http://link.gc.apple.com/players/
G:0000000000

Location Properties
Next up we have the location properties. The first two items enable
the ability to add an address into your contacts. The formatting of the
address is quite similar to that of N (name) in that it must be written in
a specific order, and you can provide a HOME or WORK address in
the type attribute. I've provided an example of this below to help you.

There are also two optional properties which aren't widely supported,
called GEO where you can put map co-ordinates and LANG where
you can provide the language you speak (in case users aren't aware).

item2.ADR;type=HOME;type=pref:;;Street;Town;Region;ZipCode;C
ountry
item2.X-ABADR:us
GEO:geo:00.000000,-000.000000
LANG;TYPE=work;PREF=1:en

Other Properties
There are some other properties which may be of interest. Photo can
add an image of you (or your business). Most apps require the photo
to be embedded using Base64 and added where the word IMAGE is
(spanning over multiple lines). This will really bulk up your file size,
however, so consider if you really need an image, as it's not the most
performant option. Finally, there is the UID, which should be a unique
code identifier (perhaps an MD5 hash as used in the event.ics file).

Page of 271 275

Optional properties (with little support) include a LOGO (similar to
PHOTO, so you may as well use photo), a NOTE property where you
can provide details about you or your business, and RELATED contact
details where you can directly link to another useful contact card.

PHOTO;ENCODING=b;TYPE=JPEG:IMAGE
UID:20f72c88-7952-44fa-8801-1db5cf2bc1cb
LOGO:https://example.com/logo.jpg
NOTE:Details.
RELATED;TYPE=contact:https://example.com/contact.vcf

Summary
And that's it. With all of these properties together, you can create a
really useful contact card that your visitors can use whenever they
want to get in touch with you quickly. Having your website, email,
phone or physical store in their contacts means that if you clients have
a problem, they won't have to jump through hoops to get answers.

This also concludes the book. We've detailed how to create every
one of the tiny but useful standardized files that exist on the web.
Thanks for reading, and I hope it's been useful to you. If you learned
about a couple of new formats that could be added to your workflow
and improve your visitors experience, it's been worth the effort of
compiling this resource. Have questions or comments? Get in touch!

Reference
For more information about the vCard format and
additional syntax details, check out the Wikipedia
article at https://en.wikipedia.org/wiki/VCard

Page of 272 275

https://en.wikipedia.org/wiki/VCard

Page of 273 275

Page of 274 275

Page of 275 275

Visit https://alexanderdawson.com

Alexander Dawson is on a mission. Using his skills as a web

developer, he's aiming to teach you over 10 syntax languages in

one go. How is this possible? Why would you need to know so

many things? This is what this book aims to answer. Using concise

chapters and a focus on the tiny web assets most developers fail

to appreciate, you shall go on a voyage of discovery and become

a master of the 52 micro-files which can underpin every website.

Developing websites has never been more
complicated because more types of syntax
exist than at any point in the web's history.

https://alexanderdawson.com

	Table of Contents
	Preface
	Introduction:
	Chapter 1:
	<head>
	<meta>
	<link>
	Chapter 2:
	.htaccess
	Recommended
	Bonus Scripts
	Chapter 3:
	ads.txt
	Chapter 4:
	carbon.txt
	Chapter 5:
	change.log
	Chapter 6:
	clientaccesspolicy.xml
	Chapter 7:
	crossdomain.xml
	Chapter 8:
	dublin.rdf
	Chapter 9:
	error.html
	Chapter 10:
	event.ics
	Chapter 11:
	favicon.ico
	apple-touch-icon.png
	x512.png and x192.png
	small.png, medium.png, wide.png and large.png
	icon.svg
	apple-splash.png
	banner.png
	Chapter 12:
	rss.xml
	itunes.xml
	atom.xml
	feed.json
	Chapter 13:
	foaf.rdf
	Chapter 14:
	geo.rdf
	geo.kml
	Chapter 15:
	humans.txt
	Chapter 16:
	index.html
	Chapter 17:
	license.txt
	terms.txt
	impressum.txt
	accessibility.txt
	privacy.txt
	Chapter 18:
	feed.opml
	Chapter 19:
	modes.css
	Chapter 20:
	opensearch.xml
	Chapter 21:
	p3p.xml
	Chapter 22:
	powder.xml
	pics.rdf
	Chapter 23:
	print.css
	Chapter 24:
	README
	Chapter 25:
	robots.txt
	Chapter 26:
	security.txt
	dnt-policy.txt
	Chapter 27:
	site.webmanifest
	browserconfig.xml
	Chapter 28:
	sitemap.xml
	Chapter 29:
	style.css
	Chapter 30:
	subtitles.vtt
	Chapter 31:
	sw.js
	Chapter 32:
	vcard.vcf

